

EJOT[®] Concrete screws

ETA-approved concrete screws for cracked and non-cracked concrete

ETA-approved concrete screws for cracked and non-cracked concrete.

Self-tapping, approved for push-through installations.

Concrete screw JC2

EJOT

The JC2 concrete screw is very easy and quick to install. Requires neither additional tools nor operations. It is able to take high loads even with small spacings and edge distances. It is removable and therefore fits well for temporary fixings.

Description

- Self-tapping, approved screw anchors for push-through installations.
- No expansion forces allow for small edge distances and spacings.
- Zinc electroplated for dry indoor use.
- Zinc alloy (C1000-ZA) corrosion resistant coating. JC2 C1000-ZA has been neutral salt spray tested according to DIN EN ISO 9227 (prevention of red rust for more than 1000 h)
- Combines the benefits of undercut and chemical anchors, requiring neither additional tools and operations nor hardening time.
- JC2-KB: Hexagon head with combined washer
- JC2-ST: Countersunk head
- JC2-IT: With combined internal thread M8/M10
- JC2-FR: Pan head
- The concrete screw is installed directly through the fixture into the bore hole only by screwing. By doing so, the thread is cutting itself into the concrete and that way creating a mechanical interlock over the total anchorage depth.

Benefits

- Economic installation
- Quick and easy installation
- No expansion forces
- Small spacings and edge distances possible
- Removable

Anchors and Installation Technology Concrete Screws

JC2-KB

JC2-ST

Carbon steel concrete screw with countersunk head and TX-drive

Carbon steel concrete screw with

- hexagonal head and TX-drive (6, 8 mm)
- hexagonal head (10 mm)

JC2-FR

Carbon steel concrete screw with pan head and TX-drive

EJOT

JC2-IT

Carbon steel concrete screw with combined internal thread M8 / M10

Base materials

Approved for

- Cracked concrete
- Non-cracked concrete
- Hollow concrete slab

Also suitable for

- Solid clay brick
- Solid sand-lime brick
- Perforated clay brick
- Natural stone

Approvals / Cerfications / Applications

Description of document		Authority/ Laboratory	ETA	Additional info
European Technical Assessment	()	ZAG -National Building and Civil Engineering Institute, Slovenia	ETA-17/0835	EAD 330232-00-0601, Option 1
European Technical Assessment	()	ZAG -National Building and Civil Engineering Institute, Slovenia	ETA-18/0221	ETAG 001 – part 1 and 6, edition 2013
Fire resistance	۲	ZAG -National Building and Civil Engineering Institute, Slovenia	ETA-17/0835 ETA-18/0221	EOTA TR 020 EAD 330232-00-0601, Option 1 / CEN/TS 1992-4
EJOT Anchor Fix calculation software		EJOT software	-	Free download: www.ejot.com/construction/ anchorfix

Additional information concerning all given data in the product data sheet

- 1. Load figures apply for a rebar spacing s \ge 15 cm or alternatively for a rebar spacing s \ge 10 cm in combination with a rebar diameter of d_s \le 10 mm. If spacings or edge distances become smaller than the characteristic figures (s_{cr.N} / c_{cr.N}) a calculation as per ETAG, Annex C, design method A needs to be carried out. For more details, see ETA-17/0835 and ETA18/0221.
- 2. Concrete is considered non-cracked when the value of tension within the concrete is $\sigma L + \sigma R \le 0$. In the absence of detailed verification $\sigma R = 3 \text{ N/mm}^2$ can be assumed (σL equals the tension within the concrete as a result of external loads, forces on anchor included; σR equals the tension coming from shrinkage or creep of the concrete, as well as displacements of supports or temperature variations).
- Shear load figures apply for an anchor without influence of a concrete edge. For shear loads close to an edge (c ≤ 10 x h_{ef}), concrete edge failure has to be checked as per ETAG, Annex C, Design Method A.

Static and quasi-static loads

The data of these tables is based on:

- Concrete C20/25, f_{ck,cube} = 25 N/mm².
- Installation has been done correctly.
- No influence of edge distances and spacings.
- Respect of minimum base material thickness.
- JC2 6 h_{nom} = 40 mm for multiple use according to PART 6

Characteristic resistances

Anchor size		JC2 6		JC2 8		JC2 10	
Approval		PART6	OPT1	-	OPT1	-	OPT1
Effective anchorage depth h _{ef}	[mm]	31.9	42.5	40.0	48.5	48.8	61.5
Nominal anchorage depth h _{nom}	[mm]	40	55	55	65	70	85
Non-cracked concrete							
Tensile N _{Bk}	[kN]	3.0	9.5	12.5	16.0	16.4	22.0
Shear V _{BK}	[kN]	6.5	9.8*	12.5	16.6*	16.8	29.1*
Cracked concrete							
Tensile N _{Rk}	[kN]	3.0	4.5	6.2	8.0	10.5	14.0
Shear V _{BK}	[kN]	6.5	9.5	8.7	11.6	11.7	33.2
* Failure mode = steel							

Design resistances

Anchor size		JC2 6		JC2 8		JC2 10	
Approval		PART6	OPT1	-	OPT1	-	OPT1
Effective anchorage depth h _{ef}	[mm]	31.9	42.5	40.0	48.5	48.8	61.5
Nominal anchorage depth h _{nom}	[mm]	40	55	55	65	70	85
Non-cracked concrete							
Tensile N _{Rd}	[kN]	2.0	6.3	8.3	10.7	10.9	14.7
Shear V _{Rd}	[kN]	4.3	7.8*	8.3	11.1	11.2	23.3*
Cracked concrete							
Tensile N _{Rd}	[kN]	2.0	3.0	4.2	5.3	7.0	9.3
Shear V _{Rd}	[kN]	4.3	6.3	5.8	7.7	7.8	22.1
* Failure mode = steel							

Recommended loads

Anchor size		JC	26	JC	2 8	JC2	10
Approval		PART6	OPT1	-	OPT1	-	OPT1
Effective anchorage depth h _{ef}	[mm]	31.9	42.5	40.0	48.5	48.8	61.5
Nominal anchorage depth h _{nom}	[mm]	40	55	55	65	70	85
Non-cracked concrete							
Tensile N _{Rec}	[kN]	1.4	4.5	5.9	7.6	7.8	10.5
Shear V _{Rec}	[kN]	3.1	5.6*	5.9	7.9	8.0	16.6*
Cracked concrete							
Tensile N _{Rec}	[kN]	1.4	2.1	3.0	3.8	5.0	6.7
Shear V _{Rec}	[kN]	3.1	4.5	4.2	5.5	5.6	15.8

* Failure mode = steel

The partial safety factor for action is $\gamma = 1.4$.

Basic loading data for precast pre-stressed hollow core slabs

The data of these tables is based on:

- Concrete C30/37 to C50/60
- Installation has been done correctly.
- Edge distances and spacings
- The data of these tables is based on ETA-18/0221

Characteristic resistances

Anchor size			JC2 6				
Flange thickness	d _b	[mm]	≥25	≥ 30	≥ 40		
Loading for all directions	F _{Bk}	[kN]	1.0	2.0	3.0		
Char. bending resistance	M ⁰ _{Rk,s}	[Nm]		16.0			
Edge distance	$C_{cr} = C_{min}$	[mm]		100			
Spacing	$S_{cr} = S_{min}$	[mm]		100			

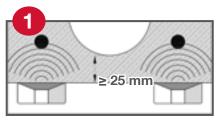
Design resistances

Anchor size			JC2 6			
Flange thickness	d _b	[mm]	≥25	≥ 30	≥ 40	
Loading for all directions	F _{Rd}	[kN]	0.7	1.3	2.0	
Design bending resistance	M _{Rd,s}	[Nm]		12.8		
Edge distance	$C_{cr} = C_{min}$	[mm]		100		
Spacing	$S_{cr} = S_{min}$	[mm]		100		

Recommended loads

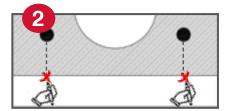
Anchor size				JC2 6	
Flange thickness	d _b	[mm]	≥25	≥ 30	≥ 40
Loading for all directions	F _{Rec}	[kN]	0.5	1.0	1.4
Rec. bending load	M _{Rec}	[Nm]		9.1	
Edge distance	$C_{cr} = C_{min}$	[mm]		100	
Spacing	$S_{cr} = S_{min}$	[mm]		100	

The partial safety factor for action is $\gamma = 1.4$.

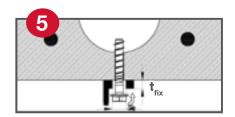

Requirements for multiple anchoring

The definition of multiple use according to the Member States is given in annex of the ETAG 001 Part 6.

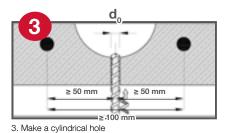
Minimum number of fixing points	Minimum number of anchors per fixing point	Maximum design load of action NSd
3	1	2 kN
4	1	3 kN

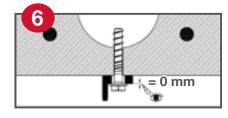

The value NSd might be increased if in the design it is shown that the requirements on the strength and stiffness of the fixture in the serviceability and ultimate states after the failure of one anchor are fulfilled.

Installation instructions in pre-stressed hollow core slabs

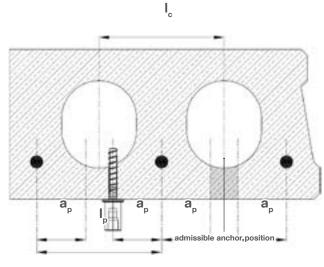


1. Locate rebars by means of suitable detector

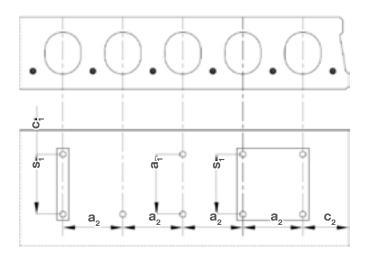

4. Clean the hole


2. Mark rebar location

5. Install the screw anchor by impact screwdriver or torgue wrench



EJOT


6. Ensure that the screw anchor head fully rests without any gap on the fixture and is not damaged

Admissible anchor position in pre-stressed hollow core slabs

Core distance	$l_c \ge 100 \text{ mm}$
Pre-stressing steel distance	$I_{p} \ge 100 \text{ mm}$
Distance between anchor position and prestressing steel	a ₀ ≥ 50 mm

Minimum spacing and edge distance of anchors and distance between anchor groups in pre-stressed hollow core slabs

Minimum edge distance	c _{min} ≥ 100 mm
Minimum anchor spacing	s _{min} ≥ 100 mm
Minimum distance between anchor groups	$a_{min} \ge 100 \text{ mm}$

c1, c2 = edge distance

s1, s2 = anchor spacing

a1, a2 = distance between anchor groups

Fire resistance

Design under fire exposure is performed according to the design method given in EOTA TR 020. The data of these tables is based on ETA-17/0835 and ETA-18/0221.

- Concrete C20/25, f_{ck,cube} = 25 N/mm²
- Values cannot be used with hollow core slabs
- Installation has been done correctly
- No influence on edge distances and spacings
- Respect of minimum base material thickness

Characteristic resistances

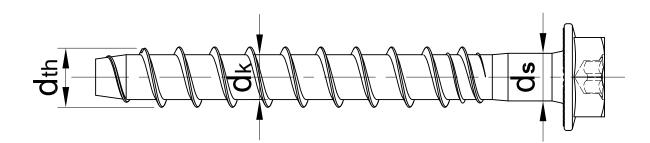
Anchor size		JC	2 6	JC2 8	JC2 10
Approval		PART 6	OPT 1	OPT 1	OPT 1
Effective anchorage depth h _{ef}	[mm]	31.9	42.5	48.5	61.5
Nominal anchorage depth h _{nom}	[mm]	40	55	65	85
Fire Exposure R30					
Tensile N _{Rk, S, fi}	[kN]	0.24	0.24	0.42	1.02
Shear (steel failure) V _{Rk, S, fi}	[kN]	0.24	0.24	0.42	1.02
Fire Exposure R120					
Tensile N _{Rk, S, fi}	[kN]	0.12	0.12	0.21	0.54
Shear (steel failure) $V_{_{\textrm{Rk},\textrm{S},\textrm{fi}}}$	[kN]	0.12	0.12	0.21	0.54

Design resistances

Anchor size		JC	26	JC2 8	JC2 10
Approval		PART 6	OPT 1	OPT 1	OPT 1
Effective anchorage depth h _{ef}	[mm]	31.9	42.5	48.5	61.5
Nominal anchorage depth h _{nom}	[mm]	40	55	65	85
Fire Exposure R30					
Tensile N _{Rd}	[kN]	0.24	0.24	0.42	1.02
Shear V _{Rd}	[kN]	0.24	0.24	0.42	1.02
Fire Exposure R120					
Tensile N _{Rd}	[kN]	0.12	0.12	0.21	0.54
Shear V _{Rd}	[kN]	0.12	0.12	0.21	0.54

Recommended loads

Anchor size		JC	26	JC2 8	JC2 10	
Approval		PART 6	OPT 1	OPT 1	OPT 1	
Effective anchorage depth h _{ef}	[mm]	31.9	42.5	48.5	61.5	
Nominal anchorage depth h _{nom}	[mm]	40	55	65	85	
Fire Exposure R30						
Tensile N _{Rec}	[kN]	0.24	0.24	0.42	1.02	
Shear V _{Rec}	[kN]	0.24	0.24	0.42	1.02	
Fire Exposure R120						
Tensile N _{Rec}	[kN]	0.12	0.12	0.21	0.54	
Shear V _{Rec}	[kN]	0.12	0.12	0.21	0.54	


The recommended loads under fire exposure include a safety factor for resistance under fire exposure $\gamma_{M,fi} = 1.0$ and the partial safety factor for action $\gamma_{E,fi} = 1.0$.

EJOT

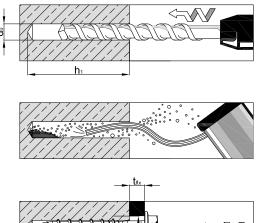
Materials and dimensions

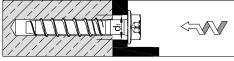
Material quality and coating

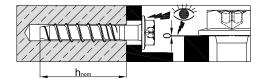
Part	
Material	Cold forged carbon steel
Coating	Zinc electroplated according to EN ISO 4042 \geq 5 μm or zinc alloy coating \geq 8 μm

Mechanical properties

Specification	JC2 6	JC2 8	JC2 10	
Nominal tensile strength F _{uk}	[N/mm²]	800	800	800
Char. bending resistance M ⁰ _{Bks}	[Nm]	16	37	76
Design bending resistance M _{Rd,s}	[Nm]	12.8	29.6	60.8
Recommended bending resistance M _{Rec}	[Nm]	9.1	21.1	43.4
Specification		JC2 6	JC2 8	JC2 10


opecification			302.0	302.0	302 10
Nominal diameter	d _{nom}	[mm]	6.0	8.0	10.0
Thread outer diameter	d _{th}	[mm]	7.45	9.9	11.9
Core diameter	d _k	[mm]	5.55	7.35	9.3
Shaft diameter	d _s	[mm]	5.88	7.8	9.6
Stressed section	A _s	[mm]	23.76	41.85	67.9


Installation instructions


Installation equipment

Specification	JC2 6	JC2 8	JC2 10					
Rotary hammer	7501200 r.p.m / 1.83.3 J							
Drill bit	SDS+ 2-CUT or 4-CUT sizes 5, 6, 8, 10 mm							
Socket (AF)	11 and 13 mm	13 mm	15 mm					
Additional tools	air pump/compressor, torque wrench, impact screw driver*							

*Installation torque for impact screwdriver T_{sp} max. 90 Nm

Notes:

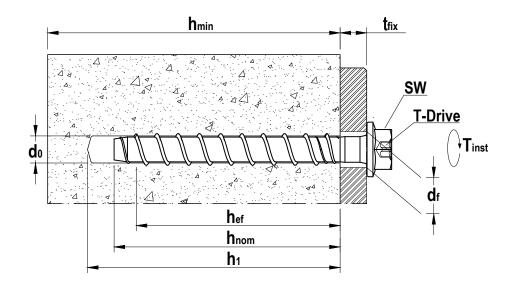
Concrete and hollow core slab

- Concrete strenght is C20/25 to C50/60 Hollow core slabs C30/37 to C50/60
- No significant voids in concrete.
- Concrete is well compacted.
- Thickness of concrete is according PDS installation data.

Installation

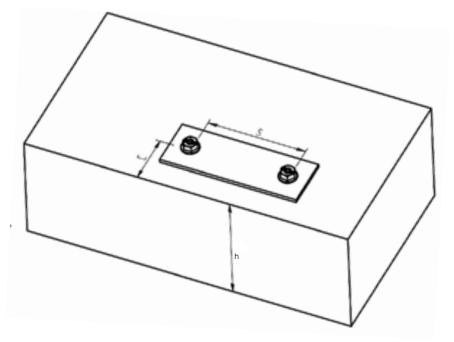
- Edge distances and spacing are according PDS installation data.
- Use proper air pump or compressor.
- Drill hole is deep enough (mentioned h1 in PDS installation data).
- All dust should be cleaned from the hole to avoid screw jamming during installation.
- Pay special attention to cleaning, especially when installing downwards.
- In case of aborted hole, drilling of new hole at a minimum distance of twice the depth of the aborted hole, or smaller distance provided the aborted drill hole is filled with high strength non-shrinkage mortar. No shear or oblique tension loads are allowed in the direction of a not filled aborted hole.

Other base materials


 Concrete screw can be used also in other base materials such as clay brick, natural stone, perforated clay brick, solid sand-lime brick.

Installation data

Specification			JC2 6		JC2 8		JC2 10	
Approval			PART 6	OPT 1	-	OPT 1	-	OPT1
Drill hole diameter	d _o	[mm]	6		8		10	
Cutting diameter at the upper tolerance limit (max. diam. bit)	$d_{\text{cut,max} \leq}$	[mm]	6.40		8.45		10.45	
Depth of drilled hole to deepest point	h _{1≥}	[mm]	50	65	65	75	80	95
Effective anchorage depth	h _{ef}	[mm]	31.9	42.5	40.0	48.5	48.8	61.5
Nominal anchorage depth	h _{nom}	[mm]	40	55	55	65	70	85
Diameter of clearance hole in the fixture	$d_{f \ge}$	[mm]	g)	12		14	
Required torque	T	[Nm]	14		40		90	
Width across flats	AF	[mm]	11 and 13		13		15	
TX-drive (in types KB, ST and FR)	T	X-	TX30		TX40		NA	

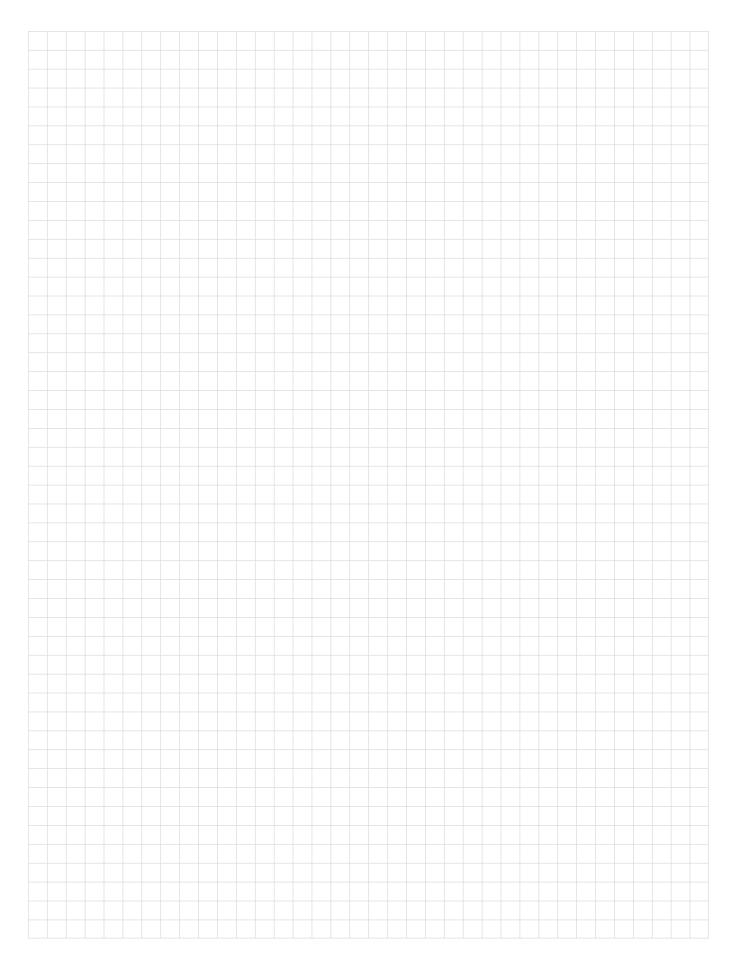

EJOT

JC2 anchor installation

Minimum thickness of concrete member, spacing and edge distance

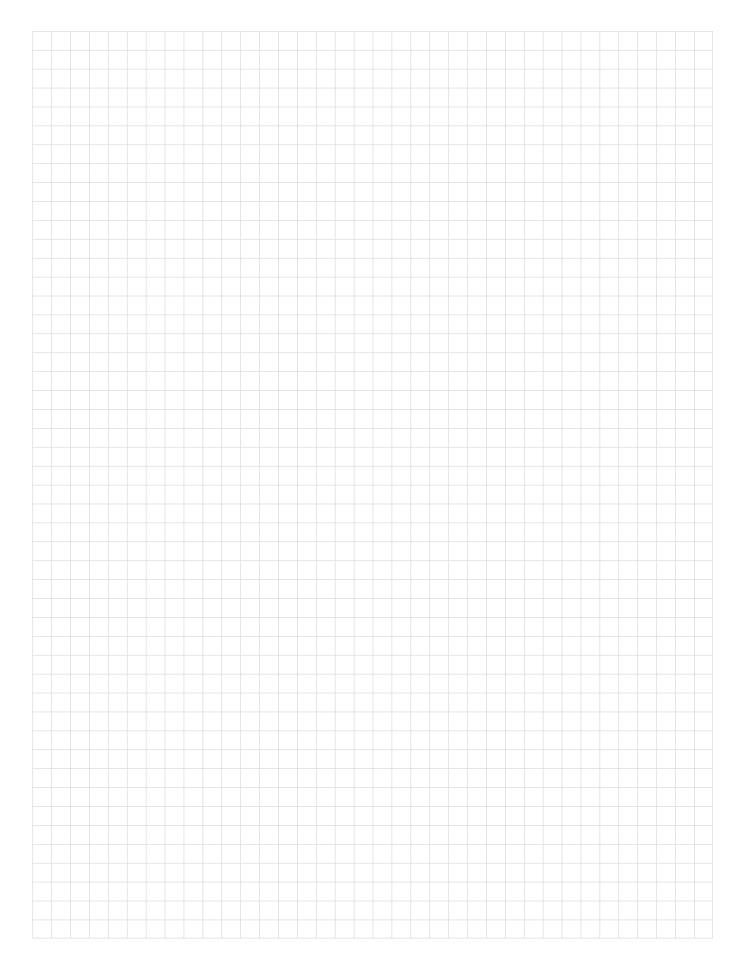
Cracked and non-cracked concrete				2 6	JC2 8		JC2 10	
Approval				OPT 1	-	OPT 1	-	OPT1
Effective anchorage depth	h _{ef}	[mm]	31.9	42.5	40.0	48.5	48.8	61.5
Nominal anchorage depth	h _{nom}	[mm]	40	55	55	65	70	85
Minimum thickness of base material	h _{min}	[mm]	100	100	110	110	125	125
Minimum spacing	S _{min}	[mm]	35	35	50	50	50	50
Minimum edge distance	C _{min}	[mm]	35	35	50	50	50	50
Critical spacing for splitting failure and concrete cone failure	S _{cr.sp}	[mm]	96	128	120	146	146	184
(in case characteristic loading affects)	S _{cr.N}	[mm]	96	128	120	146	146	184
Critical edge distance for splitting failure and concrete cone failure	C _{cr.sp}	[mm]	48	64	60	73	73	92
(in case characteristic loading affects)	C _{cr.N}	[mm]	48	64	60	73	73	92


Delivery program

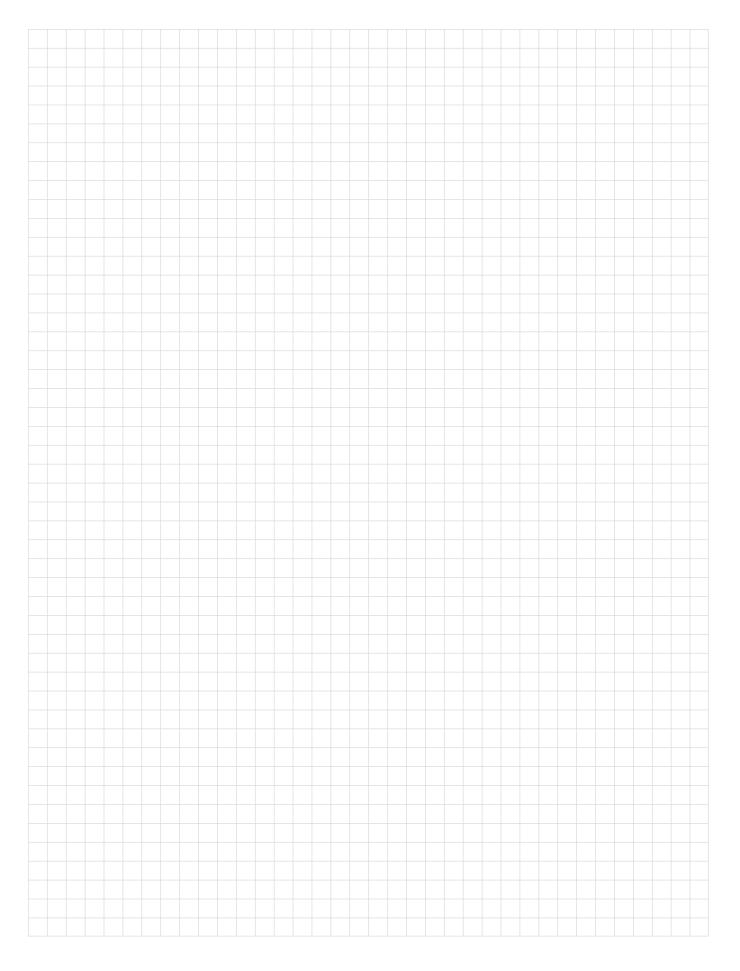

				JC2-KB	JC2-ST	JC2-FR	JC2-IT
						Omereces	
Size	Туре	T _{fix} [mm]	Length [mm]	zinc electroplated/ zinc alloy (C1000-ZA)	zinc electroplated/ zinc alloy (C1000-ZA)	zinc electroplated	zinc electroplated
	6x45/5	5	45	•		•	
	6x45 M8/M10		45				•
	6x50/10	10	50	•			
JC2 6	6x60/5/20	5/20	60	• •	• •	• •	
	6x60 M8/M10		60				• •
	6x80/25/40	25/40	80	• •	• •		
	6x100/45/60	45/60	100	• •	• •		
	8x60/5	5	60				
	8x70/5(15)	5(15)	70	•			
JC2 8	8x80/15(25)	15(25)	80	•			
	8x100/35(45)	35(45)	100	•			
	8x120/55(65)	55(65)	120	•			
	10x80/10	10	80				
	10X90/5(20)	5(20)	90	•			
JC2 10	10X100/15(30)	15(30)	100	•			
	10X120/35(50)	35(50)	120	•			
	10X140/55(70)	55(70)	140	٠			

Option 1

• Part 6


No ETA





EJOT Baubefestigungen GmbH

In der Stockwiese 35 57334 Bad Laasphe, GERMANY Phone: +49 2752 908-0 Fax: +49 2752 908-731 E-Mail: bau@ejot.com Internet: www.ejot.com