

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-15/0536 of 9 September 2015

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of Deutsches Institut für Bautechnik

Injection system EJOT Super Epoxy SE 800 SEISMIC for concrete

Bonded anchor with anchor rod for use in concrete

EJOT Baubefestigungen GmbH In der Stockwiese 35 57334 Bad Laasphe DEUTSCHLAND

EJOT BAUBEFESTIGUNGEN PLANT 1

27 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 5: "Bonded anchors", April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-15/0536

Page 2 of 27 | 9 September 2015

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 27 | 9 September 2015

Specific Part

1 Technical description of the product

The "Injection system EJOT Super Epoxy SE 800 SEISMIC for concrete" is a bonded anchor consisting of a cartridge with injection mortar EJOT Super Epoxy SE 800 SEISMIC and a steel element. The steel element consist of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30 or a reinforcing bar in the range of diameter 8 to 32 mm.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for design according to TR 029 and TR 045	See Annex C 1 to C6
Characteristic resistance for design according to CEN/TS 1992-4:2009 and TR 045	See Annex C 7 to C 12
Displacements under tension and shear loads	See Annex C 13 / C 14

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

European Technical Assessment ETA-15/0536

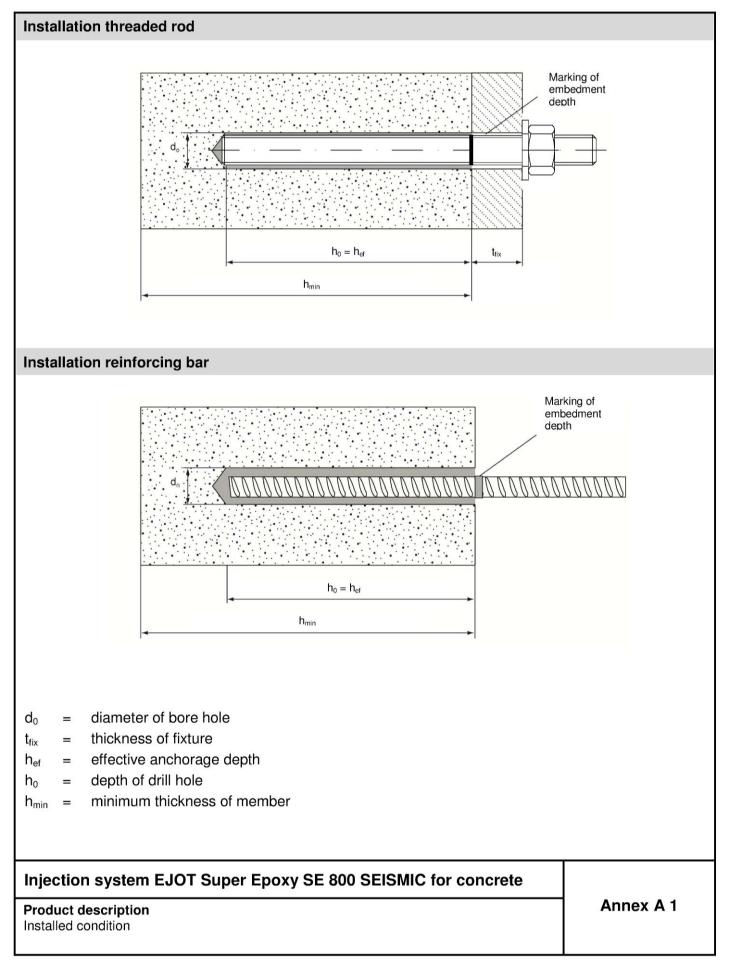
Page 4 of 27 | 9 September 2015

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [96/582/EC].

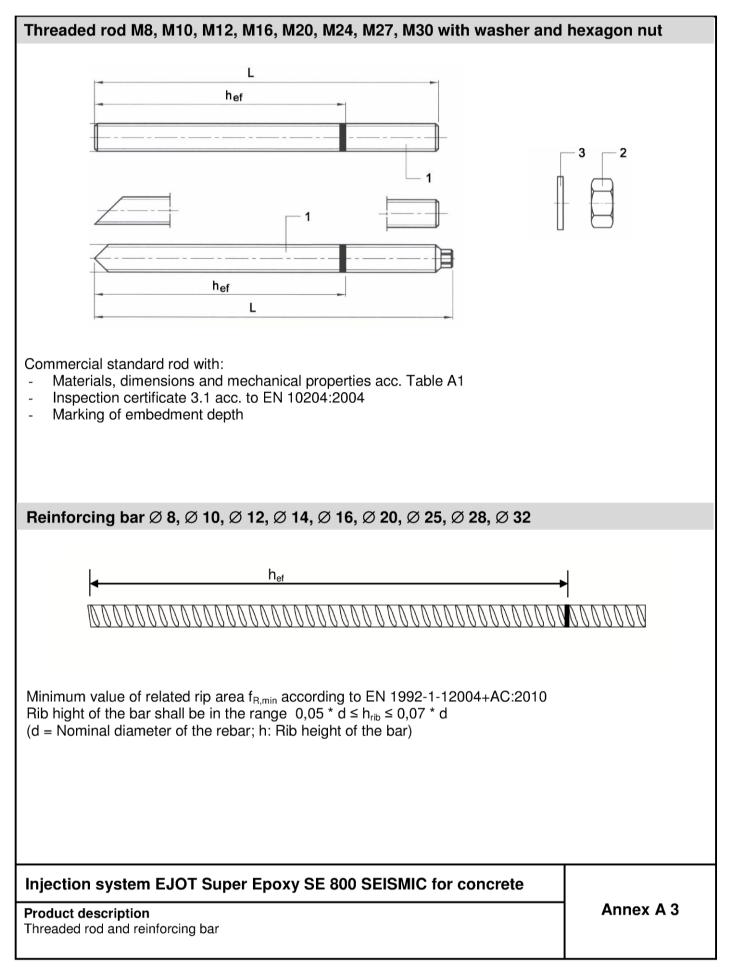
The system to be applied is: 1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 9 September 2015 by Deutsches Institut für Bautechnik

Andreas Kummerow p.p. Head of Department *beglaubigt:* Baderschneider



Injection mortar: EJOT Super Epoxy SE 800 SEISMIC	
Side-by-Side cartridge 385ml, 444ml, 585ml, 1000ml and 1400ml	
Cartridge label: EJOT Super Epoxy SE 800 SEISMIC, processing notes, charge-code, hazard-code, curing- and processing time (depending on the temperature), with as well travel scale	
Static mixer	
Injection system EJOT Super Epoxy SE 800 SEISMIC for concrete	
Product description Injection system	Annex A 2

Table A1: Materials

Part	Designation	Material					
	, zinc plated \ge 5 µm acc. to EN ISO 404						
hot-d	Ip galvanised \geq 40 µm acc. to EN ISO 1	461:2009 and EN ISO 10684:2004+AC:2009	9				
4	Anchor rod	Steel, EN 10087:1998 or EN 10263:2001	NOF . AC:2000				
1	Anchorrod	Property class 4.6, 5.8, 8.8, EN 1993-1-8:2005+AC:2009 $A_5 > 8\%$ fracture elongation					
		Steel acc. to EN 10087:1998 or EN 10263:	2001				
-		Property class 4 (for class 4.6 rod) EN ISO					
2	Hexagon nut, EN ISO 4032:2012	Property class 5 (for class 5.8 rod) EN ISO 898-2:2012,					
		Property class 8 (for class 8.8 rod) EN ISO					
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Steel, zinc plated or hot-dip galvanised					
Stain	less steel						
		Material 1.4401 / 1.4404 / 1.4571, EN 1008	8-1:2005				
	An shan na sh	> M24: Property class 50 EN ISO 3506-1:20					
1	Anchor rod	≤ M24: Property class 70 EN ISO 3506-1:20					
		$A_5 > 8\%$ fracture elongation					
		Material 1.4401 / 1.4404 / 1.4571 EN 10088					
2	Hexagon nut, EN ISO 4032:2012	> M24: Property class 50 (for class 50 rod)					
		\leq M24: Property class 70 (for class 70 rod) I	EN ISO 3506-2:2009				
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4401, 1.4404 or 1.4571, EN 100	88-1:2005				
High	corrosion resistance steel						
		Material 1.4529 / 1.4565, EN 10088-1:2005	,				
1	Anchor rod	> M24: Property class 50 EN ISO 3506-1:20					
· ·		≤ M24: Property class 70 EN ISO 3506-1:20	009				
		$A_5 > 8\%$ fracture elongation					
0		Material 1.4529 / 1.4565 EN 10088-1:2005,					
2	Hexagon nut, EN ISO 4032:2012	> M24: Property class 50 (for class 50 rod)					
	Washer, EN ISO 887:2006,	\leq M24: Property class 70 (for class 70 rod) I	EN 180 3506-2.2009				
3	EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4529 / 1.4565, EN 10088-1:2005					
Reinf	forcing bars						
Reint		Bars and de-coiled rods class B or C					
Rein1	Rebar EN 1992-1-1:2004+AC:2010, Annex C	Bars and de-coiled rods class B or C f_{Vk} and k according to NDP or NCL of EN 19	92-1-1/NA:2013				

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32.
- Seismic action for Performance Category C1: M12 to M30, Rebar Ø12 to Ø32.
- Seismic action for Performance Category C2: M12 and M16.

Base materials:

- · Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C20/25 to C50/60 according to EN 206-1:2000.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32.
- · Cracked concrete: M12 to M30, Rebar Ø12 to Ø32.

Temperature Range:

- I: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: 40 °C to +60 °C (max long term temperature +43 °C and max short term temperature +60 °C)
- III: 40 °C to +72 °C (max long term temperature +43 °C and max short term temperature +72 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to
- permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- · Anchorages under static or quasi-static actions are designed in accordance with:
 - EOTA Technical Report TR 029 "Design of bonded anchors", Edition September 2010 or
 - CEN/TS 1992-4:2009
- Anchorages under seismic actions (cracked concrete) are designed in accordance with:
 - EOTA Technical Report TR 045 "Design of Metal Anchors under Seismic Action", Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure.
 - Fastenings in stand-off installation or with a grout layer are not allowed.

Installation:

- Dry or wet concrete: M8 to M30, Rebar Ø8 to Ø32.
- Flooded holes (not sea water): M8 to M30, Rebar Ø8 to Ø32.
- · Hole drilling by hammer or compressed air drill mode.
- · Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Injection system EJOT Super Epoxy SE 800 SEISMIC for concrete

Intended Use Specifications Annex B 1

Deutsches Institut für Bautechnik

Table B1: Installation	Table B1: Installation parameters for threaded rod									
Anchor size		M 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30	
Nominal drill hole diameter	d ₀ [mm] =	10	12	14	18	24	28	32	35	
Effective encharge donth	h _{ef,min} [mm] =	60	60	70	80	90	96	108	120	
Effective anchorage depth	h _{ef,max} [mm] =	96	120	144	192	240	288	324	360	
Diameter of clearance hole in the fixture	d _f [mm] ≤	9	12	14	18	22	26	30	33	
Diameter of steel brush	d _b [mm] ≥	12	14	16	20	26	30	34	37	
Torque moment	T _{inst} [Nm] ≤	10	20	40	80	120	160	180	200	
Thickness of fixture	t _{fix,min} [mm] >				()				
Thickness of fixture	t _{fix,max} [mm] <				15	00				
Minimum thickness of h _{min} [mm]			_{∍f} + 30 m ≥ 100 mn				h _{ef} + 2d ₀	I		
Minimum spacing	s _{min} [mm]	40	50	60	80	100	120	135	150	
Minimum edge distance	c _{min} [mm]	40	50	60	80	100	120	135	150	

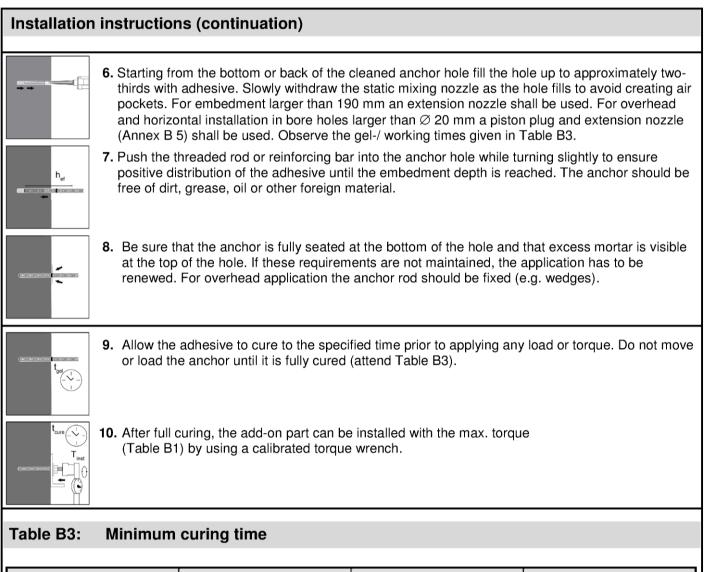
Table B2: Installation parameters for rebar

Rebar size	Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Nominal drill hole diameter	d ₀ [mm] =	12	14	16	18	20	24	32	35	40
Effective encharge depth	h _{ef,min} [mm] =	60	60	70	75	80	90	100	112	128
Effective anchorage depth	$h_{ef,max} [mm] =$	96	120	144	168	192	240	300	336	384
Diameter of steel brush	d _⊳ [mm] ≥	14	16	18	20	22	26	34	37	41,5
Minimum thickness of member	h _{min} [mm]		h _{ef} + 30 mm ≥ 100 mm				h _{ef} + 2d ₀)		
Minimum spacing	s _{min} [mm]	40	50	60	70	80	100	125	140	160
Minimum edge distance	c _{min} [mm]	40	50	60	70	80	100	125	140	160

Injection system EJOT Super Epoxy SE 800 SEISMIC for concrete

Intended Use

Installation parameters


Annex B 2

Installation	instructions	
	 Drill with hammer drill a hole into the base material to the size and ember by the selected anchor (Table B1 or Table B2). 	edment depth required
	Attention! Standing water in the bore hole must be removed before c	leaning.
⊢₀ 2x	2a. Starting from the bottom or back of the bore hole, blow the hole clean w (min. 6 bar) or a hand pump (Annex B 5) a minimum of two times. If the reached an extension shall be used.	
or	The hand-pump can be used for anchor sizes up to bore hole diameter	20 mm.
s Bar	For bore holes larger then 20 mm or deeper 240 mm, compressed air (r used.	nin. 6 bar) <u>must</u> be
	2b. Check brush diameter (Table B4) and attach the brush to a drilling mac	hino or a battory
تستر	screwdriver. Brush the hole with an appropriate sized wire brush $> d_{b,mir}$ of two times. If the bore hole ground is not reached with the brush, a brushall be used (Table B4).	(Table B4) a minimum
	2c. Finally blow the hole clean again with compressed air or a hand pump (Annex B 5) a minimum
2x	of two times. If the bore hole ground is not reached an extension shall b The hand-pump can be used for anchor sizes up to bore hole diameter For bore holes larger then 20 mm or deeper 240 mm, compressed air (r used.	e used. 20 mm.
or star y 2x	After cleaning, the bore hole has to be protected against re-contan appropriate way, until dispensing the mortar in the bore hole. If new repeated has to be directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.	
	 Attach a supplied static-mixing nozzle to the cartridge and load the cartridispensing tool. For every working interruption longer than the recommended working times for new cartridges, a new static-mixer shall be used. 	
	4. Prior to inserting the anchor rod into the filled bore hole, the position of t shall be marked on the anchor rods.	he embedment depth
×	 Prior to dispensing into the anchor hole, squeeze out separately a minim and discard non-uniformly mixed adhesive components until the mortar s colour. 	
Injection sy	stem EJOT Super Epoxy SE 800 SEISMIC for concrete	
Intended Use		Annex B 3

Installation instructions

Base material temperature	Gel time (working time)	Minimum curing time in dry concrete	Minimum curing time in wet concrete
+5°C to +9°C	120 min	50 h	100 h
+10°C to +19°C	90 min	30 h	60 h
+20°C to +29°C	30 min	10 h	20 h
+30°C to +39°C	20 min	6 h	12 h
+40 °C	12 min	4 h	8 h

Injection system EJOT Super Epoxy SE 800 SEISMIC for concrete

Installation instructions (continuation) Curing time Annex B 4

Table B4: Param	neter clear	ning and se	etting tools		
Anchor	Size (mm)	Nominal drill bit diameter d _o (mm)	Steel Brush d _♭ (mm)	Steel Brush (min brush diameter) d _{b,min} (mm)	Piston plug
		2		unne.	
	M8	10,0	12,0	10,5	
	M10	12,0	14,0	12,5	Not poopoon
Threaded	M12	14,0	16,0	14,5	Not necessary
Rod	M16	18,0	20,0	18,5	
	M20	24,0	26,0	24,5	#24
	M24	28,0	30,0	28,5	#28
	M27	32,0	34,0	32,5	#32
	M30	35,0	37,0	35,5	#35
	Ø8	12,0	14,0	12,5	
	Ø10	14,0	16,0	14,5	
	Ø12	16,0	18,0	16,5	Not necessary
Rebar	Ø14	18,0	20,0	18,5	
	Ø16	20,0	22,0	20,5	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ø20	24,0	26,0	24,5	#24
	Ø25	32,0	34,0	32,5	#32
	Ø28	35,0	37,0	35,5	#35
	Ø32	40,0	41,5	38,5	#38

Hand pump (volume 750 ml)

Drill bit diameter (d₀): 10 mm to 20 mm

**Compressed air tool (min 6 bar)** Drill bit diameter (d₀): 10 mm to 40 mm



Injection system EJOT Super Epoxy SE 800 SEISMIC for concrete

Intended Use Cleaning and setting tools Annex B 5



	aracteristic val non-cracked co							nder t	ensio	n loac	IS		
Anchor size threaded r	od			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30		
Steel failure						1							
Characteristic tension re Steel, property class 4.6		N _{Rk,s}	[kN]	15	23	34	63	98	141	184	224		
Characteristic tension re Steel, property class 5.8	sistance,	N _{Rk,s}	[kN]	18	29	42	78	122	176	230	280		
Characteristic tension re Steel, property class 8.8	sistance,	N _{Rk,s}	[kN]	29	46	67	125	196	282	368	449		
Characteristic tension re Stainless steel A4 and H property class 50 (>M24	CR,	N _{Rk,s}	[kN]	26	41	59	110	171	247	230	281		
Combined pull-out and													
Characteristic bond resis	stance in non-cracked co	oncrete C20	)/25										
Temperature range I:	dry and wet concrete	$\tau_{\rm Rk,ucr}$	[N/mm ² ]	15	15	15	14	13	12	12	12		
40°C/24°C	flooded bore hole	$\tau_{Rk,ucr}$	[N/mm ² ]	15	14	13	10	9,5	8,5	7,5	7,0		
Temperature range II:	dry and wet concrete	$\tau_{Rk,ucr}$	[N/mm²]	9,5	9,5	9,0	8,5	8,0	7,5	7,5	7,5		
60°C/43°C	flooded bore hole	$\tau_{\text{Rk},\text{ucr}}$	[N/mm ² ]	9,5	9,5	9,0	8,5	7,5	7,0	6,5	6,0		
Temperature range III:	dry and wet concrete	$\tau_{\rm Rk,ucr}$	[N/mm²]	8,5	8,5	8,0	7,5	7,0	7,0	6,5	6,5		
72°C/43°C	flooded bore hole	$\tau_{\text{Rk,ucr}}$	[N/mm ² ]	8,5	8,5	8,0	7,5	7,0	6,0	5,5	5,5		
		C30/37					04						
Increasing factors for con $\Psi_c$	ncreasing factors for concrete		C40/50		1,08								
		C50/60					1,	10					
Splitting failure				1		h	/b - <b>a</b>						
	_		h / h _{ef} ≥ 2,0	1	,0 h _{ef}		/h _{ef} ,0						
Edge distance	_	2,0 >	h / h _{ef} > 1,3	4,6 h _{ef} - 1,8 h		1	1,3						
			h / h _{ef} ≤ 1,3	2,	2,26 h _{ef}			1,0∙h	1,0 ⋅ h _{ef} 2,26 ⋅ h _{ef} c _{cr}				
Axial distance		S _{cr,sp}	[mm]	2 c _{cr,sp}				cr,sp					
Installation safety factor	(dry and wet concrete)	γ2			1	,2			1	,4			
Installation safety factor	(flooded bore hole)	γ2					1	,4					
Injection system Performances Characteristic values of								,	An	nex C	1		
Design according to T													

Z70053.15



Anchor size threaded	rod			M 12	M 16	M 20	M24	M 27	M 30
Steel failure								•	
Characteristic tension re Steel, property class 4.6		$N_{Rk,s} = N_{Rk,s,seis}$	[kN]	34	63	98	141	184	224
Characteristic tension re Steel, property class 5.8	esistance,	$N_{Rk,s} = N_{Rk,s,seis}$	[kN]	42	78	122	176	230	280
Characteristic tension re Steel, property class 8.8	esistance,	$N_{Rk,s} = N_{Rk,s,seis}$	[kN]	67	125	196	282	368	449
Characteristic tension resistance, Stainless steel A4 and HCR, property class 50 (>M24) and 70 ( $\leq$ M24)		$N_{Rk,s} = N_{Rk,s,seis}$	[kN]	59	110	171	247	230	281
	d concrete cone failure								
Characteristic bond resi	istance in cracked concr	ete C20/25							
	$\tau_{\text{Rk,cr}}$	[N/mm ² ]	7,5	6,5	6,0	5,5	5,5	5,5	
	dry and wet concrete	$\tau_{\text{Rk,seis,C1}}$	[N/mm²]	7,1	6,2	5,7	5,5	5,5	5,5
Temperature range I:		$\tau_{\text{Rk,seis,C2}}$	[N/mm²]	2,4	2,2	No Pei	No Performance Determined (NP		
40°C/24°C	flooded bore hole	$ au_{Rk,cr}$	[N/mm²]	7,5	6,0	5,0	4,5	4,0	4,0
		$\tau_{\text{Rk,seis,C1}}$	[N/mm²]	7,1	5,8	4,8	4,5	4,0	4,0
		$\tau_{\text{Rk,seis,C2}}$	[N/mm²]	2,4	2,1	No Performance Determined (NPD			
	dry and wet concrete	$ au_{Rk,cr}$	[N/mm²]	4,5	4,0	3,5	3,5	3,5	3,5
		$\tau_{\text{Rk,seis,C1}}$	[N/mm²]	4,3	3,8	3,4	3,5	3,5	3,5
Temperature range II:		$\tau_{\text{Rk,seis,C2}}$	[N/mm²]	1,4	1,4	No Performance Determined (NPD			(NPD)
60°C/43°C		$ au_{Rk,cr}$	[N/mm²]	4,5	4,0	3,5	3,5	3,5	3,5
	flooded bore hole	$\tau_{\text{Rk,seis,C1}}$	[N/mm ² ]	4,3	3,8	3,4	3,5	3,5	3,5
		$\tau_{\text{Rk,seis,C2}}$	[N/mm²]	1,4	1,4	No Pe	rformance	Determined	(NPD)
		$\tau_{\text{Rk,cr}}$	[N/mm ² ]	4,0	3,5	3,0	3,0	3,0	3,0
	dry and wet concrete	$\tau_{\text{Rk,seis,C1}}$	[N/mm ² ]	3,9	3,4	3,0	3,0	3,0	3,0
Temperature range III:		$\tau_{\text{Rk,seis,C2}}$	[N/mm²]	1,3	1,2	No Pe	rformance	Determined	(NPD)
72°C/43°C		$\tau_{\text{Rk,cr}}$	[N/mm ² ]	4,0	3,5	3,0	3,0	3,0	3,0
	flooded bore hole	$\tau_{\text{Rk,seis,C1}}$	[N/mm²]	3,9	3,4	3,0	3,0	3,0	3,0
		$\tau_{\text{Rk,seis,C2}}$	[N/mm²]	1,3	1,2	No Pe	rformance	Determined	(NPD)
ncreasing factors for co	oncrete	C30/37				1,0	)4		
(only static or quasi-stat		C40/50				1,0	)8		
Ψc		C50/60				1,1	0		
Installation safety factor	(dry and wet concrete)	γ2		1,	2		1	,4	
Installation safety factor	(flooded bore hole)	γ2				1,	4		

## Injection system EJOT Super Epoxy SE 800 SEISMIC for concrete

Performances

Characteristic values of resistance for threaded rods under tension loads in cracked concrete Design according to TR 029 and TR 045

Annex C 2



# Table C3:Characteristic values of resistance for threaded rods under shear loads in<br/>cracked and non-cracked concrete (Design according to TR 029 and TR<br/>045)

Anchor size threaded rod			M 8	M 10	M 12	M 16	M 20	M24	M 27	М 30
Steel failure without lever arm										
	V _{Bk.s}	[kN]	7	12	17	31	49	71	92	112
Characteristic shear resistance,	V _{Rk,s,seis,C1}	[kN]			14	27	42	56	72	88
Steel, property class 4.6	V _{Rk,s,seis,C2}	[kN]	No Perfo Determin		13	25	No Per	Performance Determined (NPD)		
	V _{Rk,s}	[kN]	9	15	21	39	61	88	115	140
Characteristic shear resistance, Steel, property class 5.8	V _{Rk,s,seis,C1}	[kN]	No Perfo	rmanca	18	34	53	70	91	111
Steel, property class 5.6	V _{Rk,s,seis,C2}	[kN]	Determin		17	31	No Per	No Performance Determi		
	V _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
Characteristic shear resistance, Steel, property class 8.8	$V_{\text{Rk},s,seis,C1}$	[kN]	No Perfe	No Performance		55	85	111	145	177
Steel, property class 0.0	$V_{Rk,s,seis,C2}$	[kN]	Determin		27	50	No Per	formance I	Determined	d (NPD)
Characteristic chaor registeres	V _{Rk,s}	[kN]	13	20	30	55	86	124	115	140
Characteristic shear resistance, Stainless steel A4 and HCR,	V _{Rk,s,seis,C1}	[kN]	No Perfo	ormance	26	48	75	98	91	111
property class 50 (>M24) and 70 ( $\leq$ M24)	$V_{\text{Rk},s,\text{seis},\text{C2}}$	[kN]	Determin		24	44	No Per	formance I	Determined	d (NPD)
Steel failure with lever arm										
	M ⁰ _{Rk,s}	[Nm]	15	30	52	133	260	449	666	900
Characteristic bending moment,	M ⁰ _{Rk,s,seis,C1}	[Nm]								
Steel, property class 4.6	M ⁰ _{Rk,s,seis,C2}	[Nm]	1		No Per	formance [	Determined	(NPD)		
	M ⁰ _{Rk,s}	[Nm]	19	37	65	166	324	560	833	112
Characteristic bending moment, Steel, property class 5.8	M ⁰ _{Rk,s,seis,C1}	[Nm]								
	M ⁰ _{Rk,s,seis,C2}	[Nm]	No Performance Determined (NPD)							
	M ⁰ _{Rk,s}	[Nm]	30	30 60 105 266 519 896					1333	179
Characteristic bending moment, Steel, property class 8.8	M ⁰ _{Rk,s,seis,C1}	[Nm]								
	M ⁰ _{Rk,s,seis,C2}	[Nm]	1		No Per	formance [	Determined	(NPD)		
Characteristic handing moment	M ⁰ _{Rk,s}	[Nm]	26	52	92	232	454	784	832	112
Characteristic bending moment, Stainless steel A4 and HCR,	$M^0_{Rk,s,seis,C1}$	[Nm]								
property class 50 (>M24) and 70 ( $\leq$ M24)	$M^0_{\rm Rk,s,seis,C2}$	[Nm]	1		No Per	formance [	Determined	(NPD)		
Concrete pry-out failure										
Factor k in equation (5.7) of Technical Report TR 029 for the design of Bonded Anchors						2	,0			
Installation safety factor	γ2					1	,0			
Concrete edge failure										
See section 5.2.3.4 of Technical Report TR 02	29 for the desig	n of Bond	ded Ancho	rs						
Installation safety factor	γ2					1	,0			
Injection system EJOT Supe Performances Characteristic values of resistance for thr			SEISI	MIC fo	r con	crete		An	nex C	3

Z70053.15



		acteristic valu cracked cond							ensio	n Ioad	ds in		
Anchor size reinfor	cing ba	ır			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure													
Characteristic tension	n resist	ance	N _{Rk,s}	[kN]					A _s x f _{uk}				
Combined pull-out	and co	ncrete cone failure											
Characteristic bond r	resistan	ce in non-cracked co	ncrete C20/	25									
Temperature range I	:	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	14	14	13	13	12	12	11	11	11
40°C/24°C		flooded bore hole	$ au_{\mathrm{Rk,ucr}}$	[N/mm²]	14	13	11	10	9,5	8,5	7,5	7,0	6,0
Temperature range I	II:	dry and wet concrete	$ au_{\mathrm{Rk,ucr}}$	[N/mm²]	8,5	8,5	8,0	8,0	7,5	7,0	7,0	6,5	6,5
60°C/43°C		flooded bore hole	$\tau_{\text{Rk,ucr}}$	[N/mm²]	8,5	8,5	8,0	8,0	7,5	7,0	6,0	5,5	5,0
Temperature range I		dry and wet concrete	$ au_{\mathrm{Rk,ucr}}$	[N/mm²]	7,5	7,5	7,5	7,0	7,0	6,5	6,0	6,0	6,0
72°C/43°C		flooded bore hole	$\tau_{\rm Rk,ucr}$	[N/mm ² ]	7,5	7,5	7,5	7,0	7,0	6,0	5,5	5,0	4,5
			C30/37						1,04				
Increasing factors for $\psi_c$	r concre	ete	C40/50						1,08				
			C50/60						1,10				
Splitting failure													
			h	/ h _{ef} ≥ 2,0		1,0 h _{ef}		h/h _{ef} 2,0 -					
Edge distance			2,0 > h	/ h _{ef} > 1,3	4,6	h _{ef} - 1,8	h	1,3 -		~			
			h	i / h _{ef} ≤ 1,3	2	2,26 h _{ef}		+		1,0 ⋅ h _{ef}	2,26	h _{ef}	C _{cr,sp}
Axial distance			S _{cr,sp}	[mm]			•		$2 c_{\text{cr,sp}}$				
Installation safety fac			γ2				1,2				1	,4	
Installation safety fac	ctor (floo	oded bore hole)	γ ₂						1,4				
Injection system EJOT Super Epoxy SE 800 SEISMIC for concre							ncrete	9		Ann	ex C	4	
Characteristic valu	Performances Characteristic values of resistance for rebar under tension loads in non-cracked concrete Design according to TR 029											-	



	racteristic val ked concrete							oads i	n	
Anchor size reinforcing	bar			Ø 12	Ø 14	Ø 16	Ø <b>20</b>	Ø 25	Ø <b>28</b>	Ø 32
Steel failure										
Characteristic tension res	istance	N _{Rk,s} = N _{Rk,s,seis,C1}	[kN]				$A_s \ge f_{uk}$			
Combined pull-out and	concrete cone failure									
Characteristic bond resist	ance in cracked concre	ete C20/25								
	dry and wet	$ au_{Rk,cr}$	[N/mm ² ]	7,5	7,0	6,5	6,0	5,5	5,5	5,5
Temperature range I:	[N/mm ² ]	6,9	6,4	6,2	5,7	5,5	5,5	5,5		
40°Ċ/24°C	[N/mm ² ]	7,5	6,5	6,0	5,0	4,5	4,0	4,0		
flooded bore hole $ au_{Rk,sois,C1}$ [N/mm					6,0	5,7	4,8	4,5	4,0	4,0
dry and wet $\tau_{\rm Rk,cr}$ [N/mm ²				4,5	4,0	4,0	3,5	3,5	3,5	3,5
Temperature range II:	concrete	$\tau_{\rm Rk,seis,C1}$	[N/mm ² ]	4,1	3,7	3,8	3,3	3,5	3,5	3,5
60°C/43°C		$ au_{Rk,cr}$	[N/mm ² ]	4,5	4,0	4,0	3,5	3,5	3,5	3,0
	flooded bore hole	$\tau_{\rm Rk,seis,C1}$	[N/mm ² ]	4,1	3,7	3,8	3,3	3,5	3,5	3,0
	dry and wet	$ au_{Rk,cr}$	[N/mm ² ]	4,0	3,5	3,5	3,0	3,0	3,0	3,0
Temperature range III:	concrete	$\tau_{Rk,seis,C1}$	[N/mm ² ]	3,7	3,2	3,3	2,9	3,0	3,0	3,0
72°C/43°C	finadad kara kala	$ au_{Rk,cr}$	[N/mm ² ]	4,0	3,5	3,5	3,0	3,0	3,0	3,0
flooded bore hole				3,7	3,2	3,3	2,9	3,0	3,0	3,0
C30/37				1,04						
Increasing factors for concrete (only static or quasi-static actions) C40/50				1,08						
Ψc		C50/60		1,10						
Installation safety factor (	, ,	γ2		1,2 1,4						
Installation safety factor (f	$\frac{\gamma_2}{\gamma_2}$						1,4			

## Injection system EJOT Super Epoxy SE 800 SEISMIC for concrete

Annex C 5

Performances Characteristic values of resistance for rebar under tension loads in cracked concrete Design according to TR 029 and TR 045



Table C6: Characteristic and non-cracke					d						
Anchor size reinforcing bar	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32						
Steel failure without lever arm											
	V _{Rk,s}	[kN]				0,5	50 x A _s x	f _{uk}			
Characteristic shear resistance	V _{Rk,s,seis,C1}	[kN]	N Perfori Deteri (NF	mance mined			0,4	44 x A _s x	f _{uk}		
Steel failure with lever arm											
	Characteristic bending moment     M ⁰ _{Rk,s} [Nm]     1.2 ·Weit       M ⁰ _{Rk,s,sels,C1} [Nm]     No Performance Determinance Determinance Determinance Determinance Determinance										
Characteristic bending moment	nce Dete	rmined (N	NPD)								
Concrete pry-out failure											
Factor k in equation (5.7) of Technical Repo TR 029 for the design of bonded anchors											
Installation safety factor	γ2						1,0				
Concrete edge failure											
See section 5.2.3.4 of Technical Report TR	029 for the de	esign of I	Bonded A	nchors							
Installation safety factor	γ2						1,0				
Injection system EJOT Super Epoxy SE 800 SEISMIC for concrete Performances Characteristic values of resistance for rebar under shear loads in cracked and non-cracked										nex C	6
concrete, Design according to TR 029 a	and TR 045										



Anchor size threaded rod				M 8	M 10	M 12	M 16	M 20	M24	M 27	М 30
Steel failure											
Characteristic tension resis Steel, property class 4.6	tance,	N _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
Characteristic tension resis	tance,	N _{Bk.s}	[kN]	18	29	42	78	122	176	230	280
Steel, property class 5.8 Characteristic tension resis	tance,	N _{Rk.s}	[kN]	29	46	67	125	196	282	368	449
Steel, property class 8.8 Characteristic tension resis	tance.	INRk,s		23	40	07	120	130	202	300	440
Stainless steel A4 and HCF property class 50 (>M24) a	R,	$N_{Rk,s}$	[kN]	26	41	59	110	171	247	230	281
Combined pull-out and co											
Characteristic bond resista	nce in non-cracked concrete	C20/25									
Temperature range I:	dry and wet concrete	$\tau_{\rm Rk,ucr}$	[N/mm ² ]	15	15	15	14	13	12	12	12
40°C/24°C	flooded bore hole	$\tau_{\rm Rk,ucr}$	[N/mm ² ]	15	14	13	10	9,5	8,5	7,5	7,0
Temperature range II:	dry and wet concrete	$\tau_{\rm Rk,ucr}$	[N/mm ² ]	9,5	9,5	9,0	8,5	8,0	7,5	7,5	7,5
60°C/43°C	flooded bore hole	$\tau_{\text{Rk,ucr}}$	[N/mm²]	9,5	9,5	9,0	8,5	7,5	7,0	6,5	6,0
Temperature range III:	dry and wet concrete	$\tau_{\rm Rk,ucr}$	[N/mm²]	8,5	8,5	8,0	7,5	7,0	7,0	6,5	6,5
72°C/43°C	flooded bore hole	$\tau_{Rk,ucr}$	[N/mm²]	8,5	8,5	8,0	7,5	7,0	6,0	5,5	5,5
Increasing factors for concr	ete	C30/37					1,	04			
$\Psi_c$		C40/50					,	08			
Factor according to CEN/T	2 1000 4 5 Section 6 0 0 0	C50/60	1 11				,	10			
Factor according to CEN/T	5 1992-4-5 Section 6.2.2.3	k ₈	[-]				10	), I			
Factor according to CEN/T	5 1992-4-5 Section 6.2.3.1	k _{ucr}	[-]					),1			
Edge distance		C _{cr,N}	[mm]					h _{ef}			
Axial distance		S _{cr,N}	[mm]				3,0	h _{ef}			
Splitting failure						1 6	/6 7				
			h / h _{ef} ≥ 2,0	1,0	0 h _{ef}		2,0 -				
Edge distance		2.0 >	h / h _{ef} > 1,3	4.6 h	_f - 1,8 h						
					- p	-	1,3				
			h / h _{ef} ≤ 1,3	2,2	8 h _{ef}		+	i 1,0∙h _e	, 2,26	՝ <b>c</b> շ ծ∙h _{ef}	r,sp
Axial distance		S _{cr,sp}	[mm]				2 c	cr,sp			
Installation safety factor (dr	y and wet concrete)	γinst			1	,2			1	,4	
Installation safety factor (flo	oded bore hole)	γinst					1	,4			

## Injection system EJOT Super Epoxy SE 800 SEISMIC for concrete

#### Performances

Characteristic values of resistance for threaded rods under tension loads in non-cracked concrete Design according to CEN/TS 1992-4

Annex C 7



Anchor size threaded rod				M 12	M 16	M 20	M24	M27	M30
Steel failure									
Characteristic tension resist Steel, property class 4.6	tance,	$N_{Rk,s} = N_{Rk,seis}$	[kN]	34	63	98	141	184	224
Characteristic tension resist	tance,	N _{Rk.s} = N _{Rk.seis}	[kN]	42	78	122	176	230	280
Steel, property class 5.8 Characteristic tension resist	tance,								
Steel, property class 8.8 Characteristic tension resist	tance	$N_{Rk,s} = N_{Rk,seis}$	[kN]	67	125	196	282	368	449
Stainless steel A4 and HCF property class 50 (>M24) ar	R,	$N_{\text{Rk},\text{s}} = N_{\text{Rk},\text{seis}}$	[kN]	59	110	171	247	230	281
Combined pull-out and co	oncrete failure								
Characteristic bond resistar	nce in cracked concrete C2	20/25							
		$ au_{\mathrm{Rk,cr}}$	[N/mm²]	7,5	6,5	6,0	5,5	5,5	5,5
	dry and wet concrete	$\tau_{\rm Rk,seis,C1}$	[N/mm ² ]	7,1	6,2	5,7	5,5	5,5	5,5
Temperature range I:		$\tau_{\rm Rk,seis,C2}$	[N/mm²]	2,4	2,2	No Per	ormance [	Determine	d (NPD
40°C/24°C		$\tau_{\rm Rk,cr}$	[N/mm²]	7,5	6,0	5,0	4,5	4,0	4,0
	flooded bore hole	$\tau_{\text{Rk,seis,C1}}$	[N/mm²]	7,1	5,8	4,8	4,5	4,0	4,0
		$\tau_{\text{Rk,seis,C2}}$	[N/mm²]	2,4	2,1	No Per	ormance [	Determine	d (NPD
		$\tau_{\rm Rk,cr}$	[N/mm²]	4,5	4,0	3,5	3,5	3,5	3,5
	dry and wet concrete	$\tau_{\text{Rk,seis,C1}}$	[N/mm²]	4,3	3,8	3,4	3,5	3,5	3,5
Temperature range II:		$\tau_{\text{Rk,seis,C2}}$	[N/mm²]	1,4	1,4	No Per	iormance [	Determine	d (NPD
60°C/43°C		$ au_{Rk,cr}$	[N/mm²]	4,5	4,0	3,5	3,5	3,5	3,5
	flooded bore hole	$\tau_{\rm Rk,seis,C1}$	[N/mm²]	4,3	3,8	3,4	3,5	3,5	3,5
		$\tau_{\text{Rk,seis,C2}}$	[N/mm²]	1,4	1,4	No Per	iormance [	Determine	d (NPD
		$ au_{Rk,cr}$	[N/mm²]	4,0	3,5	3,0	3,0	3,0	3,0
	dry and wet concrete	$\tau_{\text{Rk,seis,C1}}$	[N/mm²]	3,9	3,4	3,0	3,0	3,0	3,0
Temperature range III:		$\tau_{\text{Rk,seis,C2}}$	[N/mm²]	1,3	1,2	No Per	iormance [	Determine	d (NPD
72°C/43°C		$ au_{Rk,cr}$	[N/mm²]	4,0	3,5	3,0	3,0	3,0	3,0
	flooded bore hole	$\tau_{\text{Rk,seis,C1}}$	[N/mm²]	3,9	3,4	3,0	3,0	3,0	3,0
		$\tau_{\text{Rk,seis,C2}}$	[N/mm²]	1,3	1,2	No Per	iormance [	Determine	d (NPD
ncreasing factors for concr	ete	C30/37				1,	04		
only static or quasi-static a		C40/50				1,	08		
Ψc		C50/60				1,	10		
Factor according to CEN/TS 6.2.2.3	S 1992-4-5 Section	k ₈	[-]			7	,2		
Concrete cone failure									
Factor according to CEN/TS 6.2.3.1	S 1992-4-5 Section	k _{cr}	[-] 7,2						
Edge distance		C _{cr,N}	[mm]			1,5	h _{ef}		
Axial distance		S _{cr,N}	[mm]			3,0	h _{ef}		
Installation safety factor (dr	y and wet concrete)	γinst		1,2 1,4					
Installation safety factor (flo	oded bore bole)	γinst γinst		1,4					

## Injection system EJOT Super Epoxy SE 800 SEISMIC for concrete

Performances

Characteristic values of resistance for threaded rods under tension loads in cracked concrete Design according to CEN/TS 1992-4 and TR 045

Annex C 8



Anchor size threaded rod			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Steel failure without lever arm			1							
	V _{Rk,s}	[kN]	7	12	17	31	49	71	92	112
Characteristic shear resistance, Steel, property class 4.6	V _{Rk,s,seis,C1}	[kN]	No Perfe	ormance	14	27	42	56	72	88
	$V_{Rk,s,seis,C2}$	[kN]	Determin	ed (NPD)	13	25	No Per	formance [	Determined	(NPD)
	V _{Rk,s}	[kN]	9	15	21	39	61	88	115	140
Characteristic shear resistance, Steel, property class 5.8	$V_{Rk,s,seis,C1}$	[kN]		ormance	18	34	53	70	91	111
	$V_{Rk,s,seis,C2}$	[kN]	Determin	ed (NPD)	17	31	No Per	formance [	Determined	(NPD)
Characteristic shear resistance.	V _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
Steel, property class 8.8	V _{Rk,s,seis,C1}	[kN]		ormance	30	55	85	111	145	177
	V _{Rk,s,seis,C2}	[kN]	Determin	ed (NPD)	27	50	No Per	formance [	Determined	(NPD)
Characteristic shear resistance,	V _{Rk,s}	[kN]	13	20	30	55	86	124	115	140
Stainless steel A4 and HCR, property class 50 (>M24) and 70 ( $\leq$ M24)	V _{Rk,s,seis,C1}	[kN]		ormance	26	48	75	98	91	111
Ductility factor according to	ding to							formance E	Determined	(NPD)
CEN/TS 1992-4-5 Section 6.3.2.1	k ₂					0,	8			
Steel failure with lever arm										
	M ⁰ _{Rk,s}	[Nm]	15	30	52	133	260	449	666	900
Characteristic bending moment, Steel, property class 4.6	$M^0_{\ Rk,s,seis,C1}$	[Nm]			No Perfo	rmance [	)etermine	d (NPD)		
	M ⁰ _{Rk,s,seis,C2}	[Nm]					Jetennine			
Characteristic handling moment	M ⁰ _{Rk,s}	[Nm]	19	37	65	166	324	560	833	1123
Characteristic bending moment, Steel, property class 5.8	M ⁰ _{Rk,s,seis,C1}	[Nm]			No Perfo	rmance [	Determine	d (NPD)		
	M ⁰ _{Rk,s,seis,C2}	[Nm]								
Characteristic bending moment,	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	896	1333	1797
Steel, property class 8.8	M ⁰ _{Rk,s,seis,C1}	[Nm]			No Perfo	rmance [	Determine	ed (NPD)		
	M ⁰ _{Rk,s,seis,C2}	[Nm]								
Characteristic bending moment,	M ⁰ _{Rk,s}	[Nm]	26	52	92	232	454	784	832	1125
Stainless steel A4 and HCR, property class 50 (>M24) and 70 ( $\leq$ M24)	M ⁰ _{Rk,s,seis,C1}	[Nm]	-		No Perfo	rmance [	Determine	ed (NPD)		
	$M^0_{Rk,s,seis,C2}$	[Nm]								
Concrete pry-out failure			-							
Factor in equation (27) of CEN/TS 1992-4-5 Section 6.3.3	k3					2,	0			
Installation safety factor	γinst					1,	0			
Concrete edge failure			_							
Effective length of anchor	lr.	[mm]				l _f = min(h	_{ef} ; 8 d _{nom} )			
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	16	20	24	27	30
Installation safety factor	γinst					1,	0			

Z70053.15

concrete, Design according to CEN/TS 1992-4 and TR 045



Table C10: Chai crac	racteristic value ked concrete (D								n Ioa	ds in	non	
Anchor size reinforcing b	ar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure												
Characteristic tension resis	tance	N _{Rk,s}	[kN]					$A_s \ge f_{uk}$				
Combined pull-out and co	oncrete failure	<u> </u>										
Characteristic bond resista	nce in non-cracked concr	ete C20/	25									
Temperature range I:	dry and wet concrete	$\tau_{\rm Rk,ucr}$	[N/mm²]	14	14	13	13	12	12	11	11	11
40°C/24°C	flooded bore hole	$\tau_{\text{Rk,ucr}}$	[N/mm²]	14	13	11	10	9,5	8,5	7,5	7,0	6,0
Temperature range II:	dry and wet concrete	$\tau_{\rm Rk,ucr}$	[N/mm²]	8,5	8,5	8,0	8,0	7,5	7,0	7,0	6,5	6,5
60°C/43°C	flooded bore hole	$\tau_{\rm Rk,ucr}$	[N/mm²]	8,5	8,5	8,0	8,0	7,5	7,0	6,0	5,5	5,0
Temperature range III:	dry and wet concrete	$\tau_{\rm Rk,ucr}$	[N/mm²]	7,5	7,5	7,5	7,0	7,0	6,5	6,0	6,0	6,0
72°C/43°C	flooded bore hole	$\tau_{\rm Rk,ucr}$	[N/mm ² ]	7,5	7,5	7,5	7,0	7,0	6,0	5,5	5,0	4,5
		C30/37	,					1,04				
Increasing factors for concr $\Psi_c$	rete	C40/50						1,08				
Factor according to		C50/60						1,10				
CEN/TS 1992-4-5 Section	6.2.2.3	k ₈	[-]					10,1				
Concrete cone failure												
Factor according to CEN/TS 1992-4-5 Section	6.2.3.1	k _{ucr}	[-]					10,1				
Edge distance		C _{cr,N}	[mm]					1,5 h _{ef}				
Axial distance		S _{cr,N}	[mm]					3,0 h _{ef}				
Splitting failure							h/h _{ef} †‴			·····		
		ł	n / h _{ef} ≥ 2,0		1,0 h _{ef}		2,0					
Edge distance		2,0 > h	n / h _{ef} > 1,3	4,6	h _{ef} - 1,8	h	1,3		~	$\searrow$		
		ŀ	n / h _{ef} ≤ 1,3	2	2,26 h _{ef}		+				,	C _{cr,sp}
			[march]						1,0 ∙h _{ef}	2,26	∙h _{ef}	- ci,ap
Axial distance Installation safety factor (dr	a and wat concrete)	S _{cr,sp}	[mm]			1,2		2 c _{cr,sp}	1		4	
Installation safety factor (df		γinst γinst				1,2		1,4			,4	
				1								
Injection system Performances Characteristic values of Design according to CEI	resistance for rebar un	_						•	-	Anne	ex C 1	0

8.06.01-251/15



Table C11: Cha crae	aracteristic valu cked concrete									
Anchor size reinforcing	bar			Ø 12	Ø 14	Ø 16	Ø 20	Ø <b>25</b>	Ø <b>28</b>	Ø 32
Steel failure										
Characteristic tension res	istance	N _{Rk,s} = N _{Rk,s,seis,C1}	[kN]				$A_{s} \ge f_{uk}$			
Combined pull-out and	concrete failure									
Characteristic bond resist	ance in cracked concre	te C20/25								
	dry and wet	$\tau_{\text{Rk,cr}}$	[N/mm²]	7,5	7,0	6,5	6,0	5,5	5,5	5,5
Temperature range I:	concrete	$\tau_{\rm Rk,seis,C1}$	[N/mm²]	6,9	6,4	6,2	5,7	5,5	5,5	5,5
40°C/24°C		$ au_{Rk,cr}$	[N/mm²]	7,5	6,5	6,0	5,0	4,5	4,0	4,0
	flooded bore hole	$\tau_{\rm Rk,seis,C1}$	[N/mm²]	6,9	6,0	5,7	4,8	4,5	4,0	4,0
	dry and wet	$\tau_{\rm Rk,cr}$	[N/mm²]	4,5	4,0	4,0	3,5	3,5	3,5	3,5
Temperature range II:	concrete	$\tau_{\rm Rk,seis,C1}$	[N/mm²]	4,1	3,7	3,8	3,3	3,5	3,5	3,5
60°C/43°C		$\tau_{\rm Rk,cr}$	[N/mm²]	4,5	4,0	4,0	3,5	3,5	3,5	3,0
	flooded bore hole	$\tau_{\rm Rk,seis,C1}$	[N/mm²]	4,1	3,7	3,8	3,3	3,5	3,5	3,0
	dry and wat	τ _{Rk,cr}	[N/mm ² ]	4,0	3,5	3,5	3,0	3,0	3,0	3,0
Temperature range III:	dry and wet concrete	τ _{Rk,seis,C1}	[N/mm ² ]	3,7	3,2	3,3	2,9	3,0	3,0	3,0
72°C/43°C		$\tau_{\rm Rk,cr}$	[N/mm²]	4,0	3,5	3,5	3,0	3,0	3,0	3,0
	flooded bore hole	$\tau_{\rm Rk,seis,C1}$	[N/mm²]	3,7	3,2	3,3	2,9	3,0	3,0	3,0
Increasing factors for con-	crete	C30/37					1,04			
(only static or quasi-static		C40/50					1,08			
Ψ _c		C50/60					1,10			
Factor according to CEN/TS 1992-4-5 Section	ה 6.2.2.3	k ₈	[-]				7,2			
Concrete cone failure										
Factor according to CEN/TS 1992-4-5 Section	n 6.2.3.1	k _{cr}	[-]				7,2			
Edge distance		C _{cr,N}	[mm]				1,5 h _{ef}			
Axial distance		S _{cr,N}	[mm]				3,0 h _{ef}			
Installation safety factor (	dry and wet concrete)	γinst			1,2			1,	,4	
Installation safety factor (	flooded bore hole)	γinst					1,4			
Injection system	n EJOT Super I	Epoxy SE	800 SEIS	MIC fo	r cono	crete		Anr	nex C	11

Characteristic values of resistance for rebar under tension loads in cracked concrete Design according to CEN/TS 1992-4 and TR 045



Table C12: Characteristic valu and non-cracked c											
Anchor size reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø <b>25</b>	Ø 28	Ø 32
Steel failure without lever arm					•						
	$V_{Rk,s}$	[kN]				0,5	50 x A _s x	: f _{uk}			
Characteristic shear resistance	V _{Rk,s,seis,C1}	[kN]	Perfor Deter	lo mance mined PD)			0,4	l4 x A _s x	f _{uk}		
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1	k ₂						0,8				
Steel failure with lever arm											
Characteristic handling memory	$M^{0}_{Rk,s}$	[Nm] 1.2 ·W _{el} · f _{uk}									
Characteristic bending moment	M ⁰ _{Rk,s,seis,C1}	[Nm] No Performance Determined (NPD)									
Concrete pry-out failure											
Factor in equation (27) of CEN/TS 1992-4-5 Section 6.3.3	k ₃						2,0				
Installation safety factor	$\gamma$ inst						1,0				
Concrete edge failure											
Effective length of anchor	ŀ	[mm]				l _f = m	in(h _{ef} ; 8	d _{nom} )			
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	14	16	20	24	27	30
Installation safety factor	$\gamma$ inst						1,0				

<b>Injection system E</b>	JOT Super Epoxy SE	800 SEISMIC for concrete
---------------------------	--------------------	--------------------------

Annex C 12

Performances Characteristic values of resistance for rebar under shear loads in cracked and non-cracked concrete, Design according to CEN/TS 1992-4 and TR 045



	eaded rod		M 8	M 10	M 12	M 16	M 20	M24	M 27	M 3
on-cracked co	ncrete C20/25 unde	r static and qu	asi-stati	c actio	n					
1000/0100	$\delta_{N0}$ – factor	[mm/(N/mm ² )]	0,011	0,013	0,015	0,020	0,024	0,029	0,032	0,03
40°C/24°C	$\delta_{N_{\infty}}$ – factor	[mm/(N/mm ² )]	0,044	0,052	0,061	0,079	0,096	0,114	0,127	0,14
0000/4000	$\delta_{N0}$ – factor	[mm/(N/mm ² )]	0,013	0,015	0,018	0,023	0,028	0,033	0,037	0,04
60°C/43°C	$\delta_{N_{\infty}}$ – factor	[mm/(N/mm ² )]	0,050	0,060	0,070	0,091	0,111	0,131	0,146	0,16
7000/4000	$\delta_{N0}$ – factor	[mm/(N/mm ² )]	0,013	0,015	0,018	0,023	0,028	0,033	0,037	0,04
72°C/43°C	$\delta_{N_\infty} - factor$	[mm/(N/mm ² )]	0,050	0,060	0,070	0,091	0,111	0,131	0,146	0,16
racked concre	te C20/25 under sta	tic, quasi-stati	c and se	eismic (	C1 actio	n				
	$\delta_{N0}$ – factor	[mm/(N/mm ² )]			0,032	0,037	0,042	0,048	0,053	0,05
40°C/24°C	$\delta_{N\infty}$ – factor	[mm/(N/mm ² )]	1		0,21	0,21	0,21	0,21	0,21	0,2
0000/4000	$\delta_{N0}$ – factor	[mm/(N/mm ² )]		ormance	0,037	0,043	0,049	0,055	0,061	0,06
60°C/43°C	$\delta_{N\infty}-factor$	[mm/(N/mm ² )]		mined PD)	0,24	0,24	0,24	0,24	0,24	0,2
7000/4000	$\delta_{N0}$ – factor	[mm/(N/mm ² )]	1		0,037	0,043	0,049	0,055	0,061	0,06
72°C/43°C	$\delta_{N_{\infty}}$ – factor	[mm/(N/mm ² )]	1		0,24	0,24	0,24	0,24	0,24	0,2
racked concre	te C20/25 under sei	smic C2 action	l							
40°C/24°C	$\delta_{\text{N},\text{seis}(\text{DLS})} - \text{factor}$	[mm/(N/mm ² )]			0,03	0,05				
40°C/24°C	$\delta_{\text{N},\text{seis}(\text{ULS})} - \text{factor}$	[mm/(N/mm ² )]			0,06	0,09				
60°C/43°C	$\delta_{\text{N},\text{seis}(\text{DLS})} - \text{factor}$	[mm/(N/mm ² )]		ormance mined	0,03	0,05	No Perf	ormance	Determine	d (NP
00 0/43 0	$\delta_{\text{N},\text{seis}(\text{ULS})} - \text{factor}$	[mm/(N/mm ² )]		PD)	0,06	0,09		ormance	Jetennine	U (141
72°C/43°C	$\delta_{\text{N},\text{seis}(\text{DLS})} - \text{factor}$	[mm/(N/mm ² )]			0,03	0,05				
12 0/40 0	$\delta_{N,seis(ULS)}$ – factor	[mm/(N/mm ² )]			0,06	0,09				
¹⁾ Calculation of t $\delta_{N0} = \delta_{N0}$ -factor	he displacement	1	L		0,00	0,09				
$\begin{array}{l} \delta_{\text{N0}} = \delta_{\text{N0}} \text{-} factor \\ \delta_{\text{N\infty}} = \delta_{\text{N\infty}} \text{-} factor \end{array}$	the displacement r · τ; δ _{N,seis(} r · τ; δ _{N,seis(} Displacements u	$eq:delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_$	ctor $\cdot \tau$ ;		ion bonc	strength	n) M 20	M24	M 27	М 3
$\begin{split} \delta_{N0} &= \delta_{N0} \text{-} factor \\ \delta_{N\infty} &= \delta_{N\infty} \text{-} factor \\ \hline \textbf{able C14: } \\ \textbf{nchor size three} \end{split}$	the displacement r · τ; δ _{N,seis(} r · τ; δ _{N,seis(} Displacements u	_{DLS)} = δ _{N,seis(DLS)} -fa _{uLS)} = δ _{N,seis(ULS)} -fa nder shear l	ctor · τ; oad ¹⁾ (1 M 8	thread M 10	ion bonc ed roc M 12	strength ) M 16	M 20		M 27	М 3
$\begin{array}{l} \delta_{N0} = \delta_{N0} \text{-factor}\\ \delta_{N\infty} = \delta_{N\infty} \text{-factor}\\ \hline \textbf{able C14: } \\ \textbf{able C14: } \\ \textbf{nchor size three}\\ \hline \textbf{on-cracked an} \end{array}$	the displacement r · τ; δ _{N,seis(} r · τ; δ _{N,seis(} Displacements u eaded rod	_{DLS)} = δ _{N,seis(DLS)} -fa _{uLS)} = δ _{N,seis(ULS)} -fa nder shear l	ctor · τ; oad ¹⁾ (1 M 8	thread M 10	ion bonc ed roc M 12	strength ) M 16	M 20		<b>M 27</b>	
$\begin{array}{l} \delta_{N0} = \delta_{N0} \text{-factor}\\ \delta_{N\infty} = \delta_{N\infty} \text{-factor}\\ \hline \textbf{able C14: } \\ \textbf{able C14: } \\ \textbf{nchor size three}\\ \hline \textbf{on-cracked an} \end{array}$	the displacement r · τ; δ _{N,seis(} r · τ; δ _{N,seis(} Displacements u eaded rod d cracked concrete	$DLS) = \delta_{N,seis(DLS)} - fa$ $uLS) = \delta_{N,seis(ULS)} - fa$ $nder shear lactor lactor$	ctor · τ; oad ¹⁾ (1 M 8 static, q	thread M 10 uasi-sta	ion bonc ed roc M 12 atic and	strength ) M 16 seismi	M 20 c C1 ac	tion		0,0
$\begin{split} \delta_{N0} &= \delta_{N0} \text{-} factor \\ \delta_{N\infty} &= \delta_{N\infty} \text{-} factor \\ \hline able C14: If $	the displacement $\mathbf{r} \cdot \mathbf{\tau}; \qquad \delta_{N,seis(}$ $\mathbf{r} \cdot \mathbf{\tau}; \qquad \delta_{N,seis(}$ <b>Displacements u</b> eaded rod d cracked concrete $\delta_{V0}$ – factor	$\begin{aligned} & \text{DLS} = \delta_{\text{N,seis}(\text{DLS})} - \text{fa} \\ & \text{uLS} = \delta_{\text{N,seis}(\text{uLS})} - \text{fa} \\ & \text{nder shear l} \\ & \text{c20/25 under} \\ & & [mm/(kN)] \\ & & [mm/(kN)] \end{aligned}$	ctor · τ; oad ¹⁾ (i M 8 static, q 0,06 0,09	thread M 10 uasi-sta	tion bonc ed roc M 12 atic and 0,05	M 16 5,04	M 20 ic C1 ac 0,04	tion 0,03	0,03	0,0
$\delta_{N0} = \delta_{N0} \text{-factor} \\ \delta_{N\infty} = \delta_{N\infty} \text{-factor} \\ able C14: E inchor size three inchor siz$	the displacement $\mathbf{r} \cdot \mathbf{\tau}; \qquad \delta_{N,seis(}$ $\mathbf{r} \cdot \mathbf{\tau}; \qquad \delta_{N,seis(}$ <b>Displacements u</b> eaded rod d cracked concrete $\delta_{V0}$ – factor $\delta_{V\infty}$ – factor	$\begin{aligned} & \text{DLS} = \delta_{\text{N,seis}(\text{DLS})} - \text{fa} \\ & \text{uLS} = \delta_{\text{N,seis}(\text{uLS})} - \text{fa} \\ & \text{nder shear l} \\ & \text{c20/25 under} \\ & & [mm/(kN)] \\ & & [mm/(kN)] \end{aligned}$	ctor · τ; oad ¹⁾ (1 M 8 static, q 0,06 0,09	M 10 Uasi-sta 0,06 0,08	tion bonc ed roc M 12 atic and 0,05	M 16 5,04	M 20 c C1 ac 0,04 0,06	tion 0,03 0,05	0,03 0,05	0,0
$\delta_{N0} = \delta_{N0} \text{-factor} \\ \delta_{N\infty} = \delta_{N\infty} \text{-factor} \\ \text{fable C14: E} \\ \text{nchor size three on-cracked an } \\ \text{It temperatures } \\ \text{racked concrements} \\ \text{facked concrements} \\ facked conc$	the displacement $\mathbf{r} \cdot \mathbf{\tau}; \qquad \delta_{N,seis(}$ $\mathbf{r} \cdot \mathbf{\tau}; \qquad \delta_{N,seis(}$ <b>Displacements u</b> eaded rod d cracked concrete $\delta_{V0}$ – factor $\delta_{V\infty}$ – factor te C20/25 under sei	$b_{\text{LS}} = \delta_{\text{N,seis}(\text{DLS})} - fa$ $u_{\text{LS}} = \delta_{\text{N,seis}(\text{ULS})} - fa$ $nder shear la$ $C20/25 under$ $[mm/(kN)]$ $[mm/(kN)]$ $smic C2 action$	ctor · τ; oad ¹⁾ (1 M 8 static, q 0,06 0,09	thread M 10 uasi-sta 0,06 0,08	tion bonc ed roc M 12 atic and 0,05 0,08	M 16 Seismi 0,04 0,06	M 20 c C1 ac 0,04 0,06	tion 0,03 0,05	0,03	0,0 0,0
$\begin{split} \delta_{N0} &= \delta_{N0} \text{-} factor \\ \delta_{N\infty} &= \delta_{N\infty} \text{-} factor \\ \hline able C14: If $	the displacement $r \cdot \tau$ ; $\delta_{N,seis}$ $r \cdot \tau$ ; $\delta_{N,seis}$ <b>Displacements u</b> <b>eaded rod</b> <b>d cracked concrete</b> $\delta_{V0}$ – factor <b>b</b> $_{V\infty}$ – factor <b>te C20/25 under sei</b> $\delta_{V,seis(DLS)}$ – factor $\delta_{V,seis(ULS)}$ – factor the displacement $r \cdot V$ ; $\delta_{V,seis}$	$\begin{aligned} & \text{DLS} = \delta_{\text{N,seis}(\text{DLS})} - \text{fa} \\ & \text{uLS} = \delta_{\text{N,seis}(\text{uLS})} - \text{fa} \\ & \text{nder shear l} \\ \hline \\ & \text{C20/25 under} \\ & & & & & \\ & & & & & \\ & & & & & & $	ctor $\tau$ ; oad ¹⁾ (1 M 8 static, q 0,06 0,09 No Perfo Deter (NF	M 10 uasi-sta 0,06 0,08	ion bonc ed roc M 12 atic and 0,05 0,08 0,2 0,2	<b>M 16</b> <b>Seism</b> 0,04 0,06 0,1 0,1	M 20 c C1 ac 0,04 0,06	tion 0,03 0,05	0,03 0,05	<b>M 3</b>



Anchor size	reinforcina b	ar	Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø <b>25</b>	Ø 28	Ø 32
		20/25 under sta									
4000/0400	$\delta_{N0}$ – factor	[mm/(N/mm ² )]	0,011	0,013	0,015	0,018	0,020	0,024	0,030	0,033	0,037
40°C/24°C	$\delta_{N_{\infty}}$ – factor	[mm/(N/mm²)]	0,044	0,052	0,061	0,070	0,079	0,096	0,118	0,132	0,149
C00C/400C	$\delta_{N0}$ – factor	[mm/(N/mm²)]	0,013	0,015	0,018	0,020	0,023	0,028	0,034	0,038	0,043
60°C/43°C	$\delta_{N_{\infty}}$ – factor	[mm/(N/mm ² )]	0,050	0,060	0,070	0,081	0,091	0,111	0,136	0,151	0,172
72°C/43°C	$\delta_{N0}$ – factor	[mm/(N/mm ² )]	0,013	0,015	0,018	0,020	0,023	0,028	0,034	0,038	0,043
72°0/43°0	$\delta_{N_\infty} - factor$	[mm/(N/mm ² )]	0,050	0,060	0,070	0,081	0,091	0,111	0,136	0,151	0,172
Cracked con	crete C20/25	under static,	quasi-st	atic and	l seismi	c C1 act	tion				
4000/0400	$\delta_{N0}$ – factor	[mm/(N/mm ² )]			0,032	0,035	0,037	0,042	0,049	0,055	0,061
40°C/24°C	$\delta_{N_\infty} - factor$	[mm/(N/mm²)]			0,21	0,21	0,21	0,21	0,21	0,21	0,21
60°C/43°C	$\delta_{N0}$ – factor	[mm/(N/mm ² )]		ormance mined	0,037	0,040	0,043	0,049	0,056	0,063	0,070
60°C/43°C	$\delta_{N_{\infty}}$ – factor	[mm/(N/mm ² )]		ninea PD)	0,24	0,24	0,24	0,24	0,24	0,24	0,24
72°C/43°C	$\delta_{N0}$ – factor	[mm/(N/mm ² )]			0,037	0,040	0,043	0,049	0,056	0,063	0,070
72°0/43°0	$\delta_{N\infty} - factor$	[mm/(N/mm ² )]			0,24	0,24	0,24	0,24	0,24	0,24	0,24
¹⁾ Calculation of the displacement $\delta_{N0} = \delta_{N0} - \text{factor} \cdot \tau;$ ( $\tau$ : action bond strength) $\delta_{N\infty} = \delta_{N\infty} - \text{factor} \cdot \tau;$											

## Table C16: Displacement under shear load¹⁾ (rebar)

			0		(	/					
Anchor size reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
For concrete C20/25 under static, quasi-static and seismic C1 action											
All temperatures	$\delta_{V0}$ – factor	[mm/(kN)]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03
	$\delta_{V_\infty} - factor$	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04
		(V: action	shear Ioa	d)					Ι		
Injection system EJOT Super Epoxy SE 800 SEISMIC for concrete											
Performances Displacements (rebar)								Annex C 14			

placements (rebar)