

Designated according to The Construction Products (Amendment etc.) (EU Exit) Regulations 2020

UK Technical Assessment	UKTA-0836-22/6408 of 12/10/2022
Technical Assessment Body issuing the UK Technical Assessment:	British Board of Agrément
Trade name of the construction product:	Liebig Superplus self-undercutting anchor
Product family to which the construction product belongs:	Torque-controlled self undercutting anchor, made of galvanised or stainless steel, for use in concrete: sizes M8, M12 and M16.
Manufacturer:	EJOT Baubefestigungen GmbH In der Stockwiese 35 57334 Bad Laasphe Germany
Manufacturing plant(s):	EJOT Plant 14
This UK Technical Assessment contains:	21 pages including 10 Annexes which form an integral part of this assessment
This UK Technical Assessment is issued in accordance with The Construction Products (Amendment etc.) (EU Exit) Regulations 2020 on the basis of:	UKAD 330232-01-0601 Mechanical Fasteners for Use in Concrete Products

Communication of this UK Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may be made with the written consent of the British Board of Agrément. Any partial reproduction must be identified as such.

1 Technical description of the product

The Liebig Superplus⁽¹⁾ self-undercutting anchor in the sizes of M8, M12 and M16 is an anchor manufactured from of galvanized or stainless steel, which is placed into a drilled hole and anchored by torque controlled expansion.

The illustration and the description of the product are given in Annexes A.

(1) Liebig Superplus is a registered trademark

2 Specification of the intended use(s) in accordance with the applicable UK Assessment Document (hereinafter UKAD)

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annexes B.

The provisions made in this UK Technical Assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic tension resistance for static and quasi-static action	See Annexes C1, C2
Characteristic shear resistance for static and quasi-static action	See Annexes C3, C4
Displacements under static and quasi-static action	See Annexes C8, C9
Characteristic resistance for Seismic Performance Category C1 and C2 Displacements for Seismic Performance Category C2	See Annex C10

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Characteristic tension resistance under fire	See Annexes C5, C6
Characteristic shear resistance under fire	See Annex C7

3.3 Health, hygiene and the environment (BWR 3)

Regarding dangerous substances contained in this UK Technical Assessment, there may be requirements applicable to the products falling within its scope (e.g. transposed UK legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the Construction Products (Amendment etc.) (EU Exit) Regulations 2020, these requirements need also to be complied with, when and where they apply.

3.4 Safety and accessibility in use (BWR 4)

For Basic Requirement Safety in Use the same criteria are valid as for Basic Requirement Mechanical Resistance and Stability.

3.5 Protection against noise (BWR 5)

Not relevant.

3.6 Energy economy and heat retention (BWR 6)

Not relevant.

3.7 Sustainable use of natural resources (BWR 7)

Durability and Serviceability are only ensured if the specifications of intended use according to Annex B1 are kept.

4 Assessment and verification of constancy of performance (hereinafter AVCP) system applied

4.1 System of assessment and verification of constancy of performance

According to UKAD No. 330232-01-0601 and Annex V of the Construction Products Regulation (Regulation (EU) 305/2011 as brought into UK law and amended, the system of assessment and verification of constancy of performance (AVCP) 1 applies.

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable UKAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with the British Board of Agrément and made available to the UK Approved Bodies involved in the conformity attestation process.

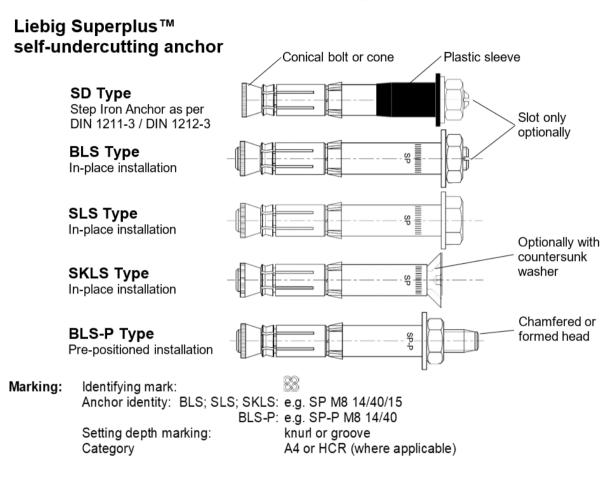
5.1 UKCA marking for the product/ system must contain the following information:

- Identification number of the Approved Body
- Name/address of the manufacturer of the product/ system
- Marking with intention of clarification of intended use
- Date of marking
- Number of certificate of constancy of performance (where applicable)
- UKTA number.

On behalf of the British Board of Agrément

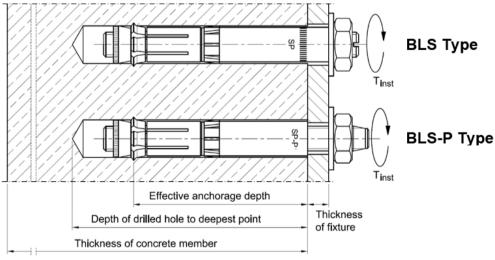
Date of Issue: 12 October 2022

Hardy Giesler Chief Executive Officer

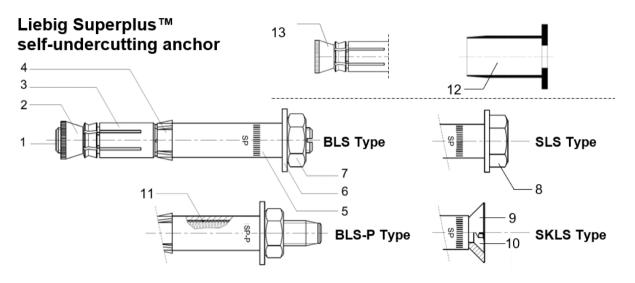


British Board of Agrément, 1st Floor Building 3,

st Floor Building 3, Hatters Lane, Croxley Park Watford WD18 8YG


ANNEX A1

This annex applies to the product described in the main body of the UK Technical Assessment.



NOTE: The SD type corresponds to the BLS M8 A4 type with plastic sleeve surrounding the distance sleeve.

Liebig Superplus™ self-undercutting anchor after installation

This annex applies to the product described in the main body of the UK Technical Assessment.

Table A	1: Materials	BLS, SLS,	SKLS and	BLS-P

Part	Designation	Material: Zinc electroplated ¹⁾
1	Threaded bolt	EN ISO 898-1; property class 8.8
2	Cone	Carbon steel
3	Anchor sleeve	Carbon steel
4	Plastic ring	PE
5	Distance sleeve	Carbon steel; $f_u \ge 500 \text{ N} \cdot \text{mm}^{-2}$
6	Washer	Carbon steel EN 10139
7	Hexagonal nut	EN ISO 898-2; property class 8
8	Hexagonal screw	EN ISO 898-1; property class 8
9	Countersunk washer	EN 10025: 1.0037 / EN 10087: 1.0718
10	Countersunk screw	EN ISO 898-1; property class 8
11	Grip (only BLS-P)	Drop of glue, tape or rubber O-Ring

(1) Coating: Parts 1 - 3 and 5 - 10 zinc electroplated according EN ISO 4042 ≥ 5µm, passivated.

Table A2: Materials BLS, SLS, SKLS and BLS-P in A4/HCR and SD

Part	Designation	Material: Stainless steel A4/HCR
1	Threaded bolt	EN 10088: 1.4401 / 1.4404 / 1.4571 / 1.4529; EN ISO 3506-1: class 80
2	Cone	EN 10088: 1.4401 / 1.4404 / 1.4571 / 1.4529
3	Anchor sleeve	EN 10088: 1.4401 / 1.4404 / 1.4571 / 1.4529
4	Plastic ring	PE
5	Distance sleeve	EN 10088: 1.4401 / 1.4404 / 1.4571 / 1.4529; f _u ≥ 500 N/mm²
6	Washer	EN 10088: 1.4401 / 1.4404 / 1.4571 / 1.4529
7	Hexagonal nut	EN 10088: 1.4401 / 1.4404 / 1.4571 / 1.4529; EN ISO 3506-2: class 80
8	Hexagonal screw	EN 10088: 1.4401 / 1.4404 / 1.4571 / 1.4529; EN ISO 3506-1: class 80
9	Countersunk washer	EN 10088: 1.4401 / 1.4404 / 1.4571 / 1.4529
10	Countersunk screw	EN 10088: 1.4401 / 1.4404 / 1.4571 / 1.4529; EN ISO 3506-1: class 80
11	Grip (only BLS-P)	Drop of glue, tape or rubber O-Ring
12	Plastic sleeve	PA; DIN EN ISO 1874-1
13	Conical bolt M8	EN 10088: 1.4401 / 1.4404 / 1.4571 / 1.4529; EN ISO 3506-1: class 80

SPECIFICATIONS OF INTENDED USE

Anchorages subject to:

- Static, quasi-static loads
- Fire exposure

Zinc plated	M8	14/40
- BLS, SLS, SKLS and BLS-P	IVIO	14/80
	M40	20/80
Stainless Steel - BLS, SLS, SKLS in A4 / HCR - BLS-P in A4 / HCR	M12	20/150
	M16	25/150
- SD (M8)	IVI I O	25/200

• Seismic actions for Performance Category C1 and C2

<u>Zinc plated</u> - BLS, SLS, SKLS and BLS-P _	M12	20/80
	IVI I Z	20/150
	M16	25/150
	M16	25/200

Base materials:

- Cracked and Non-cracked concrete
- Reinforced or unreinforced normal weight concrete of strength classes C 20/25 at least to C50/60 at most according to EN 206

Use conditions (Environmental conditions):

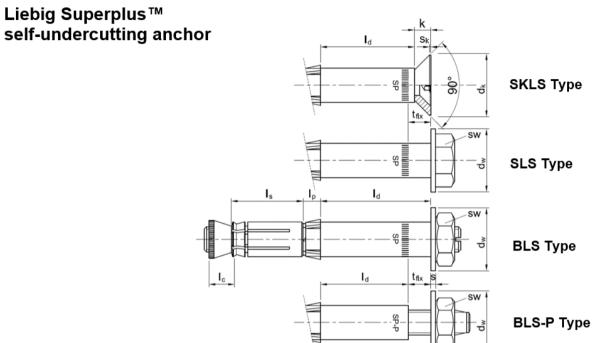
- The BLS, SLS, SKLS and BLS-P anchors may only be used in structures subject to dry indoor conditions, indoor with temporary condensation.
- The BLS, SLS, SKLS in A4 and BLS-P in A4 may be used in concrete subject to dry internal conditions and also in concrete subject to external atmospheric exposure (including industrial and marine environment), or exposure in permanently damp internal conditions, if no particular aggressive conditions exist.
- The BLS, SLS, SKLS in HCR and BLS-P in HCR may be used in concrete subject to dry internal conditions and also in concrete subject to external atmospheric exposure, in permanently damp internal conditions or in other particular aggressive conditions.

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

This annex applies to the product described in the main body of the UK Technical Assessment.

Specifications of intended use

Design:


- The anchorages are designed in accordance with the EN 1992-4 *Design of fastenings for use in concrete* under the responsibility of an engineer experienced in anchorages and concrete work.
- For application with resistance under fire exposure the anchorages are designed in accordance with method given in EOTA TR 020 *Evaluation of Anchorage in Concrete concerning Resistance to Fire*.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings.

Installation:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Use of the anchor only as supplied by the manufacturer without exchanging the components of an anchor.
- Anchor installation in accordance with the manufacturer's specifications and drawings and using the appropriate tools.
- Effective anchorage depth, edge distances and spacing not less than the specified values without minus tolerances.
- Hole drilling by hammer drill.
- Cleaning of the hole of drilling dust
- BLS, SLS, SKLS and SD versions installed through fixture using an ordinary hammer and tightened to specified torque.
- BLS-P versions installed into drill-hole using an ordinary hammer. Then, nut and washer are removed, fixture installed, washer and nut installed, and tightened to specified torque.
- Application of specified torque moment using a calibrated torque tool

In case of aborted hole, drilling of new hole at a minimum distance of twice the depth of the aborted hole, or smaller distance provided the aborted drill hole is filled with high strength mortar and no shear or oblique tension loads in the direction of aborted hole

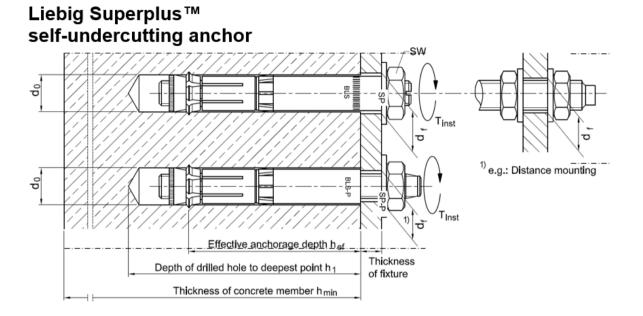

This annex applies to the product described in the main body of the UK Technical Assessment.

Table B1: Anchor dimensions

Main dimensions	Cone	e Sleeve Ring Distance		Washer		CS head			Wrench		
		_									
Anchor type	t _{fix} [mm]	lc [mm]	ls [mm]	з -р -u -			≥ d _w [mm]	d k [mm]	k [mm]	S k [mm]	≥ SW [mm]
BLS, SLS, SKLS					9-109						
M8–14/40 (A4/HCR/SD)	0 -	11.8	26	6.0	2.5-102.5 (SKLS)	1.5	20	24	6.5	0.5	13
BLS–P M8–14/40 (A4/HCR)	100				9						
BLS, SLS, SKLS					49-199						
M8–14/80 (A4/HCR/SD)	0 -	11.0			42.5-192.5 (SKLS)	4 5	~~	~ 1	0 F	0.5	10
BLS-P	150	11.8	26	6.0		1.5	20	24	6.5	0.5	13
M8-14/80 (A4/HCR)					49						
BLS, SLS, SKLS	-				30-230						
M12–20/80 (A4/HCR)	0 -	16.5	40	11.5	22-222 (SKLS)	3.5	30	33	8.0	1.0	18
BLS-P	200				30						
M12–20/80 (A4/HCR) BLS, SLS, SKLS					100-350						
M12–20/150 (A4/HCR)	0 -	10.5	10	44 5	92-342 (SKLS)	0.5	00	00	~ ~	4.0	4.0
BLS-P	250	16.5	40	11.5	100	3.5	30	33	8.0	1.0	18
M12-20/150 (A4/HCR)											
BLS, SLS, SKLS	-				80-330						
M16–25/150 (A4/HCR)	0-	17.8	60	11.5	66-316 (SKLS)	4.0	40	50	14.0	1.0	24
BLS–P M16–25/150 (A4/HCR)	250				80						
BLS, SLS, SKLS					130-430						
M16–25/200 (A4/HCR)	0 -	17.0	60	11.5	116-416 (SKLS)	10	40	E0	14.0	1.0	24
BLS-P	300	17.8	60	11.5	130	4.0	40	50	14.0	1.0	24
M16-25/200 (A4/HCR)					150						

This annex applies to the product described in the main body of the UK Technical Assessment.

Table B2: Installation data

	plated	Stainless St			Anchor type						
- BL3 - BL3	S, SLS, S S-P	KLS - BLS, SLS, - BLS-P A4/H		HCR	M8 - 14		M12 - 20		M16 - 25		
		- SD (M8)			/40	/80	/80	/150	/150	/200	
Drill hole of	diameter		do	[mm]	14	ŀ	2	0	2	5	
U U		t the upper ximum diameter bit)	d _{cut,max} ≤	[mm]	14.	50	20	.55	25	.55	
Depth of o	drilled ho	le to deepest point	h₁≥	[mm]	60	100	105	175	185	235	
Effective a	anchorag	e depth	h _{ef} ≥	[mm]	40	80	80	150	150	200	
Diameter	of	In-place installation (BLS)	d _f ≤	[mm]	16		21		26		
clearance the fixture		Mounting on the threaded bolt ¹⁾ (BLS-P / dist. mounting)	d _f ≤	[mm]	10		14		18		
Thickness	s of fixtur	e	t _{fix}	[mm]	0-100	0-150	0-200	0-250	0-250	0-300	
Width acr	oss flats	BLS, SLS, BLS-P	SW	[mm]	≥ 13		≥ 18		≥ 24		
Width acr	oss flats	/ T- drive SKLS	SW / T-	[mm / -]	5/4	5 / 40 8 / ≥ 5		≥ 50	10 / ≥ 50		
Torque m	oment		Tinst	[Nm]	25	5	8	0	180		
Minimum member	thickness	s of concrete	h _{min}	[mm]	100	160	160	300	300	400	
Zinc	Minimur	n allowable spacing	Smin	[mm]	100	80	120	150	200	150	
plated	Minimur	n allowable edge dist.	C _{min}	[mm]	80	50	100	80	150	100	
Stainless	Minimur	n allowable spacing	Smin	[mm]	80/110	80	150	150	150	180	
steel / SD	Minimur	n allowable edge dist.	C _{min}	[mm]	60/130	50	100	80	100	100	

This annex applies to the product described in the main body of the UK Technical Assessment.

Table C1:	Characteristic values for tension loads in case of static and quasi static loading.
-----------	---

Zinc plated - BLS, SLS, SKLS			Anchor type						
- BLS, SLS, SKLS - BLS-P			-	- 14		2 - 20	-	- 25	
Steel failure		/40	/80	/80	/150	/150	/200		
Characteristic resistance	N _{Rk,s}	[kN]	29	29.3 67.4 125.6					
Partial safety factor	γ _{Ms} ¹⁾	[-]				1.5			
Pull-out failure		ł							
Characteristic resistance in cracked concrete C20/25	N Rk,p	[kN]	9	16	25	40	50	75	
Characteristic resistance in non-cracked concrete C20/25	N _{Rk,p}	[kN]		nc	ot decisiv	/e failure	mode		
		C30/37	1.22						
Increasing factor for N _{Rk,p}	Ψc	C40/50	1.41						
		C50/60	1.55						
Partial safety factor	γinst	[-]				1.0			
Concrete cone failure and splittin	g failure	<u>.</u>							
Effective anchorage depth	h _{ef}	[mm]	40	80	80	150	150	200	
Factor for cracked concrete	k _{cr,N}	[-]		•		7.7			
Factor for non-cracked concrete	k _{ucr,N}	[-]				11.0			
Centre Spacing	Scr,N	[mm]	120	240	240	450	450	600	
Edge distance	Ccr,N	[mm]	60	120	120	225	225	300	
Centre Spacing (splitting)	S _{cr,sp}	[mm]	140	360	360	540	560	560	
Edge distance(splitting)	C _{cr,sp}	[mm]	70 180 180 270 280 280						
Partial safety factor	γinst	[-]				1.0			

This annex applies to the product described in the main body of the UK Technical Assessment.

Table C2: Characteristic values for tension loads in case of static and quasi static loading.

<u>Stainless Steel</u> - BLS, SLS, SKLS A4/HCR			Anchor type								
- BLS-P A4/HCR - SD (M8)			/40	M8 - 14 /40SD	1 /80	M12 /80	- 20 /150	M16 /150	- 25 /200		
Steel failure											
Characteristic resistance	N _{Rk,s}	[kN]		29.3		67	' .4	12	5.6		
Partial safety factor	γMs ¹⁾	[-]	1.6								
Pull-out failure											
Characteristic resistance in cracked concrete C20/25	N _{Rk,p}	[kN]	9		12	25	40	60	60		
Characteristic resistance in non-cracked concrete C20/25	N Rk,p	[kN]	not decisive failure mode								
		C30/37	1.22								
Increasing factor for $N_{Rk,p}$	Ψ_{C}	C40/50				1.41					
		C50/60				1.55					
Partial safety factor	γinst	[-]				1.0					
Concrete cone failure and spli	tting failu	ure									
Effective anchorage depth	h _{ef}	[mm]	4	0	80	80	150	150	200		
Factor for cracked concrete	k _{cr,N}	[-]				7.7					
Factor for non-cracked concrete	k _{ucr,N}	[-]				11.0					
Centre Spacing	S _{cr,N}	[mm]	12	20	240	240	450	450	600		
Edge distance	Ccr,N	[mm]	6	60		120	225	225	300		
Centre Spacing (splitting)	S _{cr,sp}	[mm]	140	200	360	360	540	560	560		
Edge distance (splitting)	C _{cr,sp}	[mm]	70	100	180	180	270	280	280		
Partial safety factor	γinst	[-]				1.0					

This annex applies to the product described in the main body of the UK Technical Assessment.

Table C3: Characteristic values for shear loads in case of static and quasi static loading

	nc plated LS, SLS, SKLS					Anc	hor type)	
	LS-P			M8 /40	- 14 /80	M12 /80	2 - 20 /150	M16 /150	6 - 25 /200
Steel fa	ilure without lever arm								
BLS	Characteristic resistance for In-place installation	V _{Rk,s}	[kN]	41	.4	7	0.0	11	8.0
	Partial safety factor	γMs ¹⁾	[-]		1.25				
BLS-P	Characteristic resistance for Pre- positioned installation	V _{Rk,s}	[kN]	l] 15 34			(63	
	Partial safety factor	γ _{Ms} ¹⁾	[-]		1.25				
Factor f	or considering ductility	k 7	k7 [-] 1.0						
Steel fa	ilure with lever arm								
Charact	eristic resistance	M ⁰ _{Rk,s}	[Nm]	m] 30 105 266				66	
Partial s	safety factor	γ Ms $^{1)}$	[-]				1.25		
Concre	te pry-out failure								
k-factor		k ₈	[-]	1 2 2		2			
Partial s	safety factor	γinst	[-]				1.0		
Concre	te edge failure	•							
Effective	e length of anchor under shear load	ℓf	[mm]	40	80	80	150	150	200
Outside	diameter of anchor	d _{nom}	[mm]	1	4	2	20	2	25
Cracke reinforc	d concrete without any edge ement						1.0		
Cracked concrete with straight edge reinforcement > Ø12 mm		$\Psi_{ucr,V}$	[-]		1.2				
and clos	d concrete with edge reinforcement ely spaced stirrups (a ≤ 100mm) or cked concrete					1.4			
Partial s	safety factor	γinst	[-]				1.0		

This annex applies to the product described in the main body of the UK Technical Assessment.

Table C4: Characteristic values for shear loads in case of static and quasi static loading

	<u>less Steel</u> , SLS, SKLS A4/HCR				Anchor type				
	-P A4/HCR			M8 - /40	14 /80	M12 /80	- 20 /150	M16 - 25 /150 /200	
Steel failu	re without lever arm								•
BLS	Characteristic resistance for In-place installation	V _{Rk,s}	[kN]	44.6 90.3			169.	.8	
	Partial safety factor	γ _{Ms} ¹⁾	[-]	1.33					
BLS-P	Characteristic resistance for Pre-positioned installation	V _{Rk,s}	[kN]	15	5	34		63	
	Partial safety factor	γ _{Ms} ¹⁾	[-]			1	.33		
Factor for	considering ductility	k 7	[-]			1	.0		
Steel failu	re with lever arm								
Characteri	stic resistance	M ⁰ Rk,s	[Nm]	30)	10)5	266	6
Partial safe	ety factor	γMs ¹⁾	[-]			1	.33		
Concrete	pryout failure								
k-factor		k ₈	[-]	1 2 2		2			
Partial safe	ety factor	γinst	[-]	1.0					
Concrete	edge failure	Į							
Effective le	ength of anchor under shear load	ℓf	[mm]	40	80	80	150	150	200
Outside dia	ameter of anchor	d _{nom}	[mm]	14	1	2	0	25	
Cracked c reinforcem	ent without any edge					1	.0		
Cracked concrete with straight edge reinforcement > Ø12 mm		Ψ _{ucr,V}	[-]			1	.2		
and closely	oncrete with edge reinforcement ⁄ spaced stirrups (a≤100mm) or ed concrete			1.4					
Partial safe	ety factor	γinst	[-]			1	.0		

This annex applies to the product described in the main body of the UK Technical Assessment.

Table 05. Onalacteristic tension resistance under me exposure	Table C5:	Characteristic tension resistance under fire exposure
---	-----------	---

- BLS, SLS, SKLS - BLS, S	<u>ss Steel</u> SLS, SKLS A	4/HCR		An	chor size (h _{ef}	,min)
- BLS-P - BLS-F - SD (N	9 A4/HCR 18)			M8 - 14/40	M12 - 20/80	M16 - 25/150
Steel failure						
		R30	[kN]	0.37	1.70	3.10
	Zinc	R60	[kN]	0.33	1.30	2.30
	plated	R90	[kN]	0.26	1.10	0.84
		R120	[kN]	0.18	0.84	1.60
Characteristic resistance N _{Rk,s,fi}		R30	[kN]	0.73	2.5	4.7
	Stainless	R60	[kN]	0.59	2.1	3.9
	steel	R90	[kN]	0.44	1.7	3.1
		R120	[kN]	0.37	1.3	2.5
Pull-out failure					•	
		R30	[kN]	2.3	6.3	12.5
	Zinc	R60	[kN]	2.3	6.3	12.5
Characteristic resistance $N_{Rk,p,fi}$	plated	R90	[kN]	2.3	6.3	12.5
		R120	[kN]	1.8	5.0	10.0
		R30	[kN]	2.3	6.3	15.0
	Stainless steel	R60	[kN]	2.3	6.3	15.0
Characteristic resistance $N_{Rk,p,fi}$		R90	[kN]	2.3	6.3	15.0
		R120	[kN]	1.8	5.0	12.0
Concrete cone and splitting failu	re ¹⁾			•		
		R30	[kN]	1.8	10.3	49.6
		R60	[kN]	1.8	10.3	49.6
Characteristic resistance $N_{Rk,c,fi}$		R90	[kN]	1.8	10.3	49.6
		R120	[kN]	1.5	8.2	39.7
- .	Scr,N,fi	[mm]		4 x h _{ef}	•	
Spacing	Smin	[mm]	80	150	150	
		C _{cr,N,fi}	[mm]		2 x h _{ef}	•
Edge distance		Cmin	[mm]	Fire attack fro	om one side: c _r om more than o n and ≥ 2 x h _{ef}	

(1) As a rule, splitting failure can be neglected when cracked concrete and reinforcement is assumed.

Design under fire exposure is performed according to the design method given in EOTA TR 020. Under fire exposure usually cracked concrete is assumed. The design equations are given in EOTA TR 020 section 2.2.1.

In the absence of other national regulations the partial safety factor for resistance under fire exposure $\gamma_{M,fi}$ = 1.0 is recommended

This annex applies to the product described in the main body of the UK Technical Assessment.

Table C6: Characteristic tension resistance under fire	ire exposure
--	--------------

	t ainless Steel BLS, SLS, SKI		R	A	,max)			
- BLS-P - I	BLS-P A4/HCF SD (M8)			M8 - 14/80	M12 - 20/150	M16 - 25/200		
Steel failure								
		R30	[kN]	0.37	1.70	3.10		
	Zinc	R60	[kN]	0.33	1.30	2.30		
	plated	R90	[kN]	0.26	1.10	0.84		
Characteristic registeres N		R120	[kN]	0.18	0.84	1.60		
Characteristic resistance N _{Rk} ,		R30	[kN]	0.73	2.5	4.7		
	Stainless	R60	[kN]	0.59	2.1	3.9		
	steel	R90	[kN]	0.44	1.7	3.1		
		R120	[kN]	0.37	1.3	2.5		
Pull-out failure								
		R30	[kN]	4.0	10.0	18.8		
Characteristic registeres N	Zinc	R60	[kN]	4.0	10.0	18.8		
Characteristic resistance $N_{Rk,p,fi}$	plated	R90	[kN]	4.0	10.0	18.8		
		R120	[kN]	3.2	8.0	15.0		
		R30	[kN]	3.0	10.0	15.0		
Characteristic registeres N	Stainless	R60	[kN]	3.0	10.0	15.0		
Characteristic resistance $N_{Rk,p,fi}$	steel	R90	[kN]	3.0	10.0	15.0		
		R120	[kN]	2.4	8.0	12.0		
Concrete cone and splitting fa	ilure ¹⁾							
		R30	[kN]	10.3	49.6	101.8		
		R60	[kN]	10.3	49.6	101.8		
Characteristic resistance $N_{Rk,c,fi}$		R90	[kN]	10.3	49.6	101.8		
		R120	[kN]	8.2	39.7	81.5		
a		Scr,N,fi	[mm]		4 x h _{ef}			
Spacing	S _{min}	[mm]	80	150	180			
		C _{cr,N,fi}	[mm]		2 x h _{ef}	1		
Edge distance		,,.			rom one side: c			
		C _{min}	[mm]	Fire attack from more than one side:				
				$C_{min} \ge 300 \text{ m}$	ım and ≥ 2 x h _{ef}			

(1) As a rule, splitting failure can be neglected when cracked concrete and reinforcement is assumed.

Design under fire exposure is performed according to the design method given in EOTA TR 020. Under fire exposure usually cracked concrete is assumed. The design equations are given in EOTA TR 020 section 2.2.1.

In the absence of other national regulations the partial safety factor for resistance under fire exposure $\gamma_{M,fi}$ = 1.0 is recommended

This annex applies to the product described in the main body of the UK Technical Assessment.

Table C7:	Characteristic shear resistance under fire exposure
-----------	---

	<u>ss Steel</u> SLS, SKLS /	A4/HCR			Anchor size	
- BLS-P - BLS-F - SD (M	P A4/HCR 18)			M8	M12	M16
Steel failure without lever arm						
		R30	[kN]	0.37	1.7	3.1
	Zinc	R60	[kN]	0.33	1.3	2.3
	plated	R90	[kN]	0.26	1.1	2.0
Characteristic resistance V _{Rk.s.fi}		R120	[kN]	0.18	0.84	1.6
		R30	[kN]	0.73	2.5	4.7
	Stainless	R60	[kN]	0.59	2.1	3.9
	steel	R90	[kN]	0.44	1.7	3.1
		R120	[kN]	0.37	1.3	2.5
Steel failure with lever arm		-				
		R30	[Nm]	0.38	2.6	6.6
	Zinc	R60	[Nm]	0.34	2.0	5.0
Characteristic resistance M ⁰ _{Rk,s,fi}	plated	R90	[Nm]	0.26	1.7	4.3
		R120	[Nm]	0.19	1.3	3.3
		R30	[Nm]	0.75	3.9	9.9
	Stainless	R60	[Nm]	0.60	3.3	8.3
	steel	R90	[Nm]	0.45	2.6	6.6
		R120	[Nm]	0.38	2.1	5.3
Concrete pryout failure				M8 - 14/40	M12 - 20/80	M16 - 25/150
Factor in eq. (5.6) of ETAG Annex C, 5.2.3.3	section	k	[-]	1	2	2
		R30	[kN]	1.8	20.6	99.2
Characteristic registeres V/		R60	[kN]	1.8	20.6	99.2
Characteristic resistance $V_{Rk,cp,fi}$		R90	[kN]	1.8	20.6	99.2
		R120	[kN]	1.5	16.4	79.4
Concrete pryout failure				M8 - 14/80	M12 - 20/150	M16 - 25/200
Factor in eq. (5.6) of ETAG Annex C, 5.2.3.3	section	k	[-]		2	
		R30	[kN]	20.6	99.2	203.6
Characteristic registeres V		R60	[kN]	20.6	99.2	203.6
Characteristic resistance $V_{Rk,cp,fi}$	R90	[kN]	20.6	99.2	203.6	
		R120	[kN]	16.4	79.4	163.0
Concrete edge failure The initial value V ⁰ _{Rk,c,fi} of the character be determined by:	ristic resista	nce in c	oncrete	e C20/25 to C	50/60 under fire	exposure may

$$V_{Rk,c,fi}^{0} = 0.25 \text{ x } V_{Rk,c}^{0} (\leq R90)$$

 $V_{Rk,c,fi}^{0} = 0.20 \text{ x } V_{Rk,c}^{0}$ (R120)

with V⁰_{Rk,c} initial value of the characteristic resistance in cracked concrete C20/25 under normal temperature.

Design under fire exposure is performed according to the design method given in EOTA TR 020.

Under fire exposure usually cracked concrete is assumed. The design equations are given in EOTA TR 020 section 2.2.1.

EOTA TR 020 covers design for fire exposure from one side. For fire attack from more than one side the edge distance must be increased to cmin \ge 300 mm and \ge 2 \cdot hef.

In the absence of other national regulations the partial safety factor for resistance under fire exposure γM , fi = 1.0 is recommended.

This annex applies to the product described in the main body of the UK Technical Assessment.

Zinc plated			Displ	aceme	nts and	l tensile	loads	in C20/	/25 to C	50/60		
- BLS, SLS, SKLS - BLS-P		С	racked	concrete			Non-cracked concrete					
	C20/25			C50/60			C20/25			C50/60		
	Ν	δνο	δν∞	Ν	δνο	δν∞	Ν	δνο	δν∞	Ν	δ _{N0}	δι∞
	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
M8 - 14/40	1.6	0.1	0.2	2.5	0.1	0.2	5.1	0.1	0.2	7.8	0.1	0.2
M8 - 14/80	5.9	0.2	0.4	15.1	0.2	0.4	10.8	0.2	0.4	15.1	0.2	0.4
M12 - 20/80	5.9	0.1	0.2	9.2	0.1	0.2	14.3	0.1	0.2	22.2	0.1	0.2
M12 - 20/150	15.9	0.2	0.5	39.7	0.2	0.5	28.4	0.2	0.5	39.7	0.2	0.5
M16 - 25/150	15.9	2.0	2.0	24.6	2.0	2.0	36.7	2.0	2.0	52.9	2.0	2.0
M16 - 25/200	29.8	2.0	2.0	74.1	2.0	2.0	52.9	2.0	2.0	74.1	2.0	2.0

 Table C8: Displacements under tension loads for static and quasi-static loading

Table C9: Displacements under tension loads for static and quasi-static loading

Stainless Steel			Displ	aceme	nts and	l tensile	loads	in C20	/25 to C	50/60		
- BLS, SLS, SKLS A4/HCR		С	racked	ete		Non-cracked concrete						
- BLS-P A4/HCR	C20/25			C50/60			C20/25			C50/60		
- SD (M8)	Ν	δ _{N0}	δ _{N∞}	Ν	δ _{N0}	δ _{N∞}	Ν	δ _{N0}	δ _{N∞}	Ν	δ _{N0}	δ _{N∞}
	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
M8 - 14/40	3.6	0.3	1.1	5.5	0.3	1.1	3.4	0.2	0.6	5.5	0.1	0.6
M8 - 14/80	5.7	0.5	1.7	5.7	0.5	1.7	13.9	2.0	2.0	13.9	2.0	2.0
M12 - 20/80	9.9	0.5	0.9	15.4	0.7	0.9	14.3	0.4	0.6	32.1	1.0	1.0
M12 - 20/150	15.9	0.9	1.4	15.4	0.7	1.4	32.1	3.8	3.8	32.1	1.0	1.0
M16 - 25/150	23.8	0.9	1.4	36.9	1.4	1.4	36.7	0.7	0.7	59.8	3.4	3.4
M16 - 25/200	23.8	1.2	1.6	36.9	1.4	1.6	59.8	5.0	5.0	59.8	3.4	3.4

This annex applies to the product described in the main body of the UK Technical Assessment.

	Displacements and shear loads in C20/25 to C50/60											
Zinc plated - BLS, SLS, SKLS	Cracked	concrete C20/2	25 - C50/60	Non-crack	ed concrete C20	/25 - C50/60						
- BLS-P	V	δνο	δν∞	V	δνο	δ∨∞						
	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]						
M8 - 14/40	11.4	5.0	7.5	11.4	2.1	3.1						
	11.4	(+1.2)	(+1.2)	11.4	(+1.2)	(+1.2)						
M8 - 14/80	11.4	5.0	7.5	11.4	2.1	3.1						
	11.4	(+1.2)	(+1.2)	11.4	(+1.2)	(+1.2)						
N40 00/00	22.9	5.0	7.5	22.9	2.5	3.8						
M12 - 20/80	22.9	(+1.3)	(+1.3)	22.9	(+1.3)	(+1.3)						
M12 - 20/150	22.9	5.0	7.5	22.9	2.5	3.8						
W12 - 20/150	22.9	(+1.3)	(+1.3)	22.9	(+1.3)	(+1.3)						
M16 - 25/150	45.7	4.0	6.0	45.7	3.3	5.0						
W10 - 25/150	45.7	(+1.3)	(+1.3)	45.7	(+1.3)	(+1.3)						
M16 - 25/200	45.7	4.0	6.0	45.7	3.3	5.0						
W 10 - 20/200	40.7	(+1.3)	(+1.3)	40.7	(+1.3)	(+1.3)						

Table C10: Displacements under shear loads for static and quasi-static loading	Table C10: Dis	placements under	r shear loads f	or static and c	uasi-static loading
--	----------------	------------------	-----------------	-----------------	---------------------

Table C11: Displacements under shear loads for static and quasi-static loading

Stainless Steel	Displacements and shear loads in C20/25 to C50/60								
- BLS, SLS, SKLS	Cracked	Cracked concrete C20/25 - C50/60			Non-cracked concrete C20/25 - C50/60				
A4/HCR	V	δνο	δv∞	V	δνο	δv∞			
- BLS-P A4/HCR - SD (M8)	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]			
M8 - 14/40	25.5	6.3	9.5	25.5	6.3	9.5			
	20.0	(+1.7)	(+1.7)	20.0	(+1.7)	(+1.7)			
M8 - 14/80	25.5	6.3	9.5	25.5	6.3	9.5			
	20.0	(+1.7)	(+1.7)	20.0	(+1.7)	(+1.7)			
M12 - 20/80	51.6	8.0	12.0	51.6	8.0	12.0			
		(+1.7)	(+1.7)	51.0	(+1.7)	(+1.7)			
M12 - 20/150	51.6	8.0	12.0	51.6	8.0	12.0			
		(+1.7)	(+1.7)	51.0	(+1.7)	(+1.7)			
M16 - 25/150	96.5	8.8	13.2	06 F	8.8	13.2			
		(+1.7)	(+1.7)	96.5	(+1.7)	(+1.7)			
M16 - 25/200	96.5	8.8	13.2	96.5	8.8	13.2			
		(+1.7)	(+1.7)	90.5	(+1.7)	(+1.7)			

Displacement: the tables C10 and C11 show the deformation to be expected from the anchor itself, whilst the bracket value indicates the movement between the anchor body and the hole drilled in the concrete member or the hole in the fixture.

This annex applies to the product described in the main body of the UK Technical Assessment.

Table C12:	Characteristic	resistances in	i case of	seismic action
------------	----------------	----------------	-----------	----------------

Zinc plated			Anchor size					
- BLS, SLS, SKLS - BLS-P			M12-	20	M16-25			
			/80	/150	/150	/200		
Steel failure								
Characteristic resistance C1	N _{Rk,s,seis,C1}	[kN]	67.4	67.4	125.6	125.6		
Characteristic resistance C2	N _{Rk,s,seis,C2}	[kN]	67.4	51.2	125.6	125.6		
Partial safety factor	Partial safety factor γ _{Ms,seis} ¹⁾ [-]			1.5				
Steel failure without lever arm								
Characteristic resistance C1	V _{Rk,s,seis,C1}	[kN]	30.3 62.8		.8			
Characteristic resistance C2	V _{Rk,s,seis,C2}	[kN]	18.2 51.5		.5			
Partial safety factor	$\gamma_{Ms,seis}$ 1)	[-]	1.25					
Pull-out failure								
Characteristic resistance C1	N _{Rk,p,seis,C1}	[kN]	25	40	50	50		
Characteristic resistance C2	N _{Rk,p,seis,C2}	[kN]	25	40	50	50		
Partial safety factor	$\gamma_{Mp,seis}$ ¹⁾	[-]	1.5 ²⁾					
Concrete cone and splitting failure ³⁾								
Effective anchorage depth	h _{ef}	[mm]	80	150	150	200		
Partial safety factor	γMc,seis ¹⁾ γMsp,seis ¹⁾	[-]	1.5 ²⁾					
Concrete pryout and concrete edge failure ³⁾								
Effective anchorage depth	h _{ef}	[mm]	80	150	150	200		
Partial safety factor γ _{Mc,seis} 1) [-]			1.5 ²⁾					

(1) In absence of other national regulations

(2) The installation safety factor of $\gamma_2 = 1.0$ is included (3) For concrete cone, splitting, pryout and edge failure, see EOTA TR 045

Table C13: Displacements in case of seismic action

Zinc plated			Anchor size				
- BLS, SLS, SKLS - BLS-P		M12-20		M16-25			
			/80	/150	/150	/200	
Displacement DLS	$\delta_{N,seis}$	[mm]	4.6	7.3	7.2	7.2	
Displacement ULS	δ _{N,seis}	[mm]	9.2	13.1	10.9	10.9	
Displacement DLS	δ _{V,seis}	[mm]	6.2	6.2	5.6	5.6	
Displacement ULS	δv,seis	[mm]	10.9	10.9	11.1	11.1	

British Board of Agrément, 1st Floor Building 3,

1st Floor Building 3, Hatters Lane, Croxley Park Watford WD18 8YG