LIEBIG® The ORIGINAL Anchoring Technology

SUPERPLUS M8-M16

The undercut fixing system that does not require a special setting tool.

FUNCTION

Automatic self-undercutting. The unique design of the SUPERPLUS causes an undercut to be created when the installation torque is applied. The sleeve's outer cutting teeth expand and undercut into the base material. This results in a durable mechanical interlock with base material that functions in both cracked and non-cracked concrete.

BENEFITS

- High capacity anchor for cracked and non-cracked concrete
- Increased reliability due to undercut technology
- Simple installation, no special drill bit or setting tool required
- Applying torque creates undercut
- Two approved embedment depths per diameter
- Lower installed cost than traditional undercut anchors
- Reduced edge distances and spacings
- Approved for fire resistance
- Custom lengths available on request

CONSTRUCTION

BLS With hex nut, washer and threaded stud

BLS-P With hex nut, washer and threaded stud

ILS With internally threaded sleeve

MATERIAL

Grade 8.8 carbon steel, zinc plated A4-80 stainless steel

BASE MATERIAL

Cracked and non-cracked concrete: C20/25 to C50/60

APPROVAL

ETA-01/0011 - Option 1 - Carbon steel, zinc plated, A4 stainless steel

LOAD RANGE

N_{perm} = 4.3 - 56.1 [kN] Tension: V_{perm} = 4.3 - 90.7 [kN] Shear:

PRODUCT RANGE

BLS: M8, M12 and M16, carbon steel, zinc plated / A4 stainless steel BLS-P: M8, M12 and M16, carbon steel, zinc plated / A4 stainless steel ILS: M8, carbon steel, zinc plated

APPLICATIONS

- Power plants
- Machines
- Steel and industrial plants
- Façades

BENEFITS

- · High tension and shear capacity
- Reduced edge distances and spacings
- Simple self-undercutting installation

PRODUCT DESCRIPTION

The LIEBIG SUPERPLUS is available in zinc plated carbon steel and A4 stainless steel. Its design offers the high load capacity and reliability of an undercut anchor, but with the ease of installation of an expansion anchor. In contrast to competing undercut anchor systems, the SUPERPLUS does not require special drill bits or setting tools. You need only apply the torque to create the self-undercut.

- Structural Steel work
- Base plates
- Nuclear

Shallow embedment depths

SUPERPLUS M8-M16

Custom lengths available on request.

SUPERPLUS BLS/BLS-P Carbon Steel Zinc Plated

Threaded stud with hex nut and washer Material: Grade 8.8 carbon steel, zinc plated Approval: ETA- 01/0011 Option 1

*Not included in approval. Available as special order.

SUPERPLUS BLS/BLS-P A4 Stainless Steel

Threaded stud with hex nut and washer Material: A4 stainless steel Approvals: ETA-05/0013 – Option 1

Туре	Order Code	Thread Size	Diameter x Depth of drilled hole	Max Fixture Thickness	Fixture Hole Diameter	Eff. Embedment Depth	Total Length	Weight (kg/100pcs)	Box Quantity
BLS M8-14/80/25A4	BLS0814080025A4	M8	14 x 100	25	16	80	130	13.4	25
BLS M12-20/80/15A4	BLS1220080015A4	M12	20 x 105	15	21	80	130	26.5	10
BLS M12-20/80/30A4	BLS1220080030A4	M12	20 x 105	30	21	80	145	29.5	10
BLS M16-25/150/30A4	BLS1625150030A4	M16	25 x 185	30	26	150	220	70.0	10
BLS M16-25/150/40A4	BLS1625150040A4	M16	25 x 185	40	26	150	230	72.0	10

SUPERPLUS ILS Internally threaded, Carbon steel, zinc plated

Туре	Order Code	Thread Size	Diameter x Depth of drilled hole	Max Fixture Thickness	Fixture Hole Diameter	Eff. Embedment Depth	Total Length	Weight (kg/100pcs)	Box Quantity
ILS M8-14/80	ILS0814080	M8	14 x 100	-	10	80	93	8.7	25

TECHNICAL DATA Carbon Steel Zinc Plated

Permissible loads for single anchors with no influencing edge distances or spacings. Loads are calculated using partial safety factors from ETAG 001 and the characteristic anchor and installation data from this catalogue. Design calculations shall follow the requirements of ETA-01/0011. Material: Carbon steel, Grade 8.8, zinc plated

	Thread Siz	e		M8	M8	M12	M12	M16	M16
Effective	embedment de	epth (h_) (n	ım)	40	80	80	150	150	200
	Type BLS			M8-14/40/	M8-14/80/	M12-20/80/	M12-20/150/	M16-25/150/	M16-25/200/
Permissible	e tension loa	ads ¹⁾							
		C20/25	[kN]	4.3	7.6	11.9	19.0	23.8	35.7
	Cracked	C30/37	[kN]	5.2	9.3	14.5	23.2	29.0	43.6
	Concrete	C40/50	[kN]	6.0	10.7	16.8	26.9	33.6	50.4
		C50/60	[kN]	6.6	10.8	18.5	28.4	36.9	53.0
N _{perm}		C20/25	[kN]	6.1	10.8	17.2	28.4	44.1	53.0
	Non-	C30/37	[kN]	7.4	10.8	21.0	28.4	53.0	53.0
		C40/50	[kN]	8.6	10.8	24.3	28.4	53.0	53.0
	CONCIECE	C50/60	[kN]	9.4	10.8	26.7	28.4	53.0	53.0
Permissible	e shear load	S ^{1) 2)}							
		C20/25	[kN]	4.3	23.7	24.6	40.0	63.0	67.4
	Cracked	C30/37	[kN]	5.3	23.7	30.0	40.0	67.4	67.4
	Concrete	C40/50	[kN]	6.1	23.7	34.6	40.0	67.4	67.4
		C50/60	[kN]	6.7	23.7	38.1	40.0	67.4	67.4
V _{perm}		C20/25	[kN]	6.1	23.7	34.4	40.0	67.4	67.4
	Non-	C30/37	[kN]	7.4	23.7	40.0	40.0	67.4	67.4
		C40/50	[kN]	8.6	23.7	40.0	40.0	67.4	67.4
	CONCICIC	C50/60	[kN]	9.4	23.7	40.0	40.0	67.4	67.4
Permissible	e bendina m	oments ¹⁾	4)						
	M		[Nm]	17.1	17.1	60.0	60.0	152.0	152.0
0	perm								
Spacings, e	age distanc	es and r	nember	Thicknesses	00	00	450	150	000
Effective er	nbeament de	eptn n _{ef}	[mm]	40	80	80	150	150	200
Unaracte	ristic spacing) ⁵⁾ S _{cr, N}	[mm]	120	240	240	450	450	600
Nillill Oberesteriel	um spacing	S _{min}	[[[]]]	100	80	120	100	200	150
Minimum	lic euge distan	ICe ^{oy} C _{cr, N}	[[[]]]	60	120	120	220	220	300
Minimum	euge uistani	ce C _{min}	[[[]]]	00 100	50	100	200	100	100
		iess II _{min}	[IIIIII]	100	100	100	300	300	400
Installation	data								
Drill ho	ole diameter	d ₀	[mm]	14	14	20	20	25	25
Drill	hole depth	h ₁	[mm]	60	100	105	175	185	235
Clearance hole in the	Through- anchora	fix ge d _f	[mm]	16	16	21	21	26	26
fixture	Installation threaded s	n on stud d _f	[mm]	10	18	14	14	18	18
Width	across flats	SW	[mm]	17	17	22	22	27	27
Install	ation torque	T _{inst}	[Nm]	25	25	80	80	180	180

Installed anchor

1) The permissible loads have been calculated using the partial safety factors for resistances stated in the ETA-approval and a partial safety factor for actions of $\gamma_{\rm E} = 1.4$. The permissible loads are valid for unreinforced concrete and reinforced concrete with a rebar spacing s \geq 15 cm and reinforced concrete with a rebar spacing s \geq 10 cm if the rebar is 10 mm or smaller.

2) The permissible shear loads are based on a single anchor without influencing concrete edges. For shear loads applied

close to an edge (c \leq 10 h_{el} or 60 d) concrete edge failure must be checked per ETAG 001, Annex C, design method A. 3) Concrete is considered non-cracked when the tensile stress within the concrete is $\sigma_1 + \sigma_n \leq 0$. In the absence of detailed verification $\sigma_n = 3$ N/mm² can be assumed (σ_L equals the tensile stress within the concrete as a result of external loads,

forces on anchors included).

4) The permissible bending moments are only valid for the threaded stud (e.g. in case of a distance mounting). 5) If spacings or edge distances become smaller than the characteristic values (i.e. $s \le s_{crN}$ and/or $c \le c_{crN}$) a calculation per ETAG 001, Annex C, design method A must be performed.

For details, see ETA-01/0011.

TECHNICAL DATA A4 Stainless Steel

Permissible loads for single anchors with no influencing edge distances or spacings. Loads are calculated using partial safety factors from ETAG 001 and the characteristic anchor and installation data from this catalogue. Design calculations shall follow the requirements of ETA-05/0013. Material: A4 stainless steel

	Thread Siz	e		M8	M8	M12	M12	M16	M16
Effective e	embedment de	epth (h _{ef}) (n	nm)	40	80	80	150	150	200
	Type BLS			M8-14/40/	M8-14/80/	M12-20/80/	M12-20/150/	M16-25/150/	M16-25/200/
Permissible	tension loa	ads ¹⁾							
		C20/25	[kN]	4.3	5.7	11.9	19.0	23.8	28.6
	Cracked	C30/37	[kN]	5.2	7.0	14.5	23.2	34.9	34.9
	Concrete	C40/50	[kN]	6.0	8.1	16.8	26.9	40.3	40.3
N		C50/60	[kN]	6.6	8.9	18.5	29.5	44.3	44.3
IN _{perm}		C20/25	[kN]	6.1	13.1	17.2	30.1	44.1	56.1
	Non- Crooked	C30/37	[kN]	7.4	13.1	21.0	30.1	53.8	56.1
	Concrete ³⁾	C40/50	[kN]	8.6	13.1	24.3	30.1	56.1	56.1
		C50/60	[kN]	9.4	13.1	26.7	30.1	56.1	56.1
Permissible	shear load	S ^{1) 2)}							
		C20/25	[kN]	4.3	24.0	24.6	48.5	63.0	90.7
	Cracked	C30/37	[kN]	5.3	24.0	30.0	48.5	76.8	90.7
	Concrete	C40/50	[kN]	6.1	24.0	34.6	48.5	88.8	90.7
M		C50/60	[kN]	6.7	24.0	38.1	48.5	90.7	90.7
V _{perm}		C20/25	[kN]	6.1	24.0	34.4	48.5	88.2	90.7
	Non- Cracked	C30/37	[kN]	7.4	24.0	42.0	48.5	90.7	90.7
	Concrete ³⁾	C40/50	[kN]	8.6	24.0	48.5	48.5	90.7	90.7
		C50/60	[kN]	9.4	24.0	48.5	48.5	90.7	90.7
Permissible	bending m	oments ¹) 4)						
	M _{perm}		[Nm]	16.1	16.1	56.4	56.4	142.9	142.9
Spacinos, e	dae distanc	es and i	nember	thicknesses					
Effective er	nbedment de	epth h.	[mm]	40	80	80	150	150	200
Characte	ristic spacino	1 ⁵⁾ S.	. [mm]	120	240	240	450	450	600
Minim	um spacing	S	[mm]	100	80	150	150	150	180
Characterist	ic edge distar	1Ce ⁵⁾ C	[mm]	60	120	120	225	225	300
Minimum	edge distand	ce C _{min}	[mm]	60	50	100	80	100	100
Minimum m	nember thickn	iess h _{mir}	[mm]	100	160	160	300	300	400
Installation	data								
Drill ho	le diameter	d	[mm]	14	14	20	20	25	25
Drill I	nole depth	h,	[mm]	60	100	105	175	185	235
Clearance	Through- anchora	fix d _f	[mm]	16	16	21	21	26	26
fixture	Installation threaded s	n on stud d _f	[mm]	10	10	14	14	18	18
Width	across flats	SW	[mm]	17	17	22	22	27	27
Installa	ation torque	T	[Nm]	25	25	80	80	180	180

Installed anchor

1) The permissible loads have been calculated using the partial safety factors for resistances stated in the ETA-approval and a partial safety factor for actions of $\gamma_{\rm F} = 1.4$. The permissible loads are valid for unreinforced concrete and reinforced concrete with a rebar spacing s \geq 15 cm and reinforced concrete with a rebar spacing s \geq 10 cm if the rebar is 10 mm or smaller.

2) The permissible shear loads are based on a single anchor without influencing concrete edges. For shear loads applied close to an edge (c ≤ 10 h_{ef} or 60 d) concrete edge failure must be checked per ETAG 001, Annex C, design method A.

close to an edge ($c \le 10 n_{el}$ of v = 0 of concrete edge failure must be checked per LIAS 001, Annex C, design method A. 3) Concrete is considered non-cracked when the tensile stress within the concrete is $\sigma_{L} + \sigma_{n} \le 0$. In the absence of detailed verification $\sigma_{n} = 3 N m^{max}$ can be assumed (σ_{L} equals the tensile stress within the concrete as a result of external loads, forces on anchors included).

The permissible bending moments are only valid for the threaded stud (e.g. in case of a distance mounting).

a) the permissible behaning moments are only valid for the threaded stud (e.g. in case of a distance mounting).
b) If spacings or edge distances become smaller than the characteristic values (i.e. s ≤ s_{crN} and/or c ≤ c_{crN}) a calculation per ETAG 001, Annex C, design method A must be performed.

For details, see ETA-05/0013.

TECHNICAL DATA Internally threaded anchor, Carbon steel, zinc plated

Permissible loads for single anchors with no influencing edge distances or spacings. Loads are calculated using partial safety factors from ETAG 001 and the characteristic anchor and installation data from this catalogue.

Material: Carbon steel, zinc plated

Thread Size	M8
Effective embedment depth (h _{ef}) (mm)	80
Type ILS	M8-14/80/

Permissible tension loads¹⁾

		C20/25	[kN]	7.6
	Cracked	C30/37	[kN]	9.3
N _{perm}	Concrete	C40/50	[kN]	10.7
		C50/60	[kN]	10.8
	Non- Cracked Concrete ³⁾	C20/25	[kN]	10.8
		C30/37	[kN]	10.8
		C40/50	[kN]	10.8
		C50/60	[kN]	10.8

Permissible shear loads^{1) 2)}

		C20/25	[kN]	8.4
V _{perm}	Cracked	C30/37	[kN]	8.4
	Concrete	C40/50	[kN]	8.4
		C50/60	[kN]	8.4
		C20/25	[kN]	8.4
	Non- Cracked	C30/37	[kN]	8.4
	Concrete ³⁾	C40/50	[kN]	8.4
		C50/60	[kN]	84

Spacings, edge distances and member thicknesses

Effective embedment depth	h _{ef}	[mm]	80
Characteristic spacing ⁴⁾	S _{cr, N}	[mm]	240
Minimum spacing	S _{min}	[mm]	80
Characteristic edge distance ⁴⁾	C _{cr, N}	[mm]	120
Minimum edge distance	C _{min}	[mm]	50
Minimum member thickness	h	[mm]	160

Installation data

d ₀	[mm]	14
h ₁	[mm]	100
d _f	[mm]	10
L _e	[mm]	12 to 23
T,	[mm]	4
SW	[mm]	8
T _{inst}	[Nm]	25
	d ₀ h ₁ d _f L _e T _i SW	$\begin{array}{ll} { { { { { { { { { { { { { { { } } } }$

1) The permissible loads have been calculated assuming that grade 8.8 fasteners are used and using the partial safety factors for resistances stated in ETA-01/0011 and a partial safety factor for actions of $\gamma_F = 1.4$. The permissible loads are valid for unreinforced concrete and reinforced concrete with a rebar spacing $s \ge 15$ cm and reinforced concrete with a rebar spacing $s \ge 10$ cm if the rebar is 10 mm or smaller.

2) The permissible shear loads are based on a single anchor without influencing concrete edges. For shear loads applied close to an edge ($c \le 10 h_{el}$ or 60 d) concrete edge failure must be checked per ETAG 001, Annex C, design method A. 3) Concrete is considered non-cracked when the tensile stress within the concrete is $\sigma_{L} + \sigma_{R} \le 0$. In the absence of detailed verification $\sigma_{R} = 3 \text{ N/mm}^{2}$ can be assumed (σ_{L} equals the tensile stress within the concrete as a result of external loads, forces on anchors included).

4) If spacings or edge distances become smaller than the characteristic values (i.e. $s \le s_{c,N}$ and/or $c \le c_{c,N}$) a calculation per ETAG 001, Annex C, design method A must be performed. For details, see ETA-01/0011.

The ORIGINAL Anchoring Technology Now with EJOT® Global Support

BLS M8-14/40SA A4 Step Iron Anchor, A4 stainless steel

Threaded stud with hex nut and special plastic sleeve Material: A4 stainless steel Approvals: ETA-05/0013 - Option 1, Expert Report AZ.: 05003

Туре	Order	Thread	Diameter x Depth	Max Fixture	Fixture Hole	Eff. Embedment	Total	Weight	Box
	Code	Size	of drilled hole	Thickness	Diameter	Depth	Length	(kg/100pcs)	Quantity
BLS M8-14/40SA A4	BLS0814040SAA4	M8	14 x 60	20	16	40	85	9.0	25

TECHNICAL DATA

Туре			BLS M8-14/40SA A4
Thread size			M8
Eff. embedment depth	h _{ef}	[mm]	40
Min. edge distance	C _{min}	[mm]	60
Min. member thickness	h _{min}	[mm]	100

Installation data

Drilled hole diameter	d _o	[mm]	14
Drilled hole depth	h ₁	[mm]	60
Step iron thickness	t _{fix}	[mm]	20
Step iron hole diameter	d _f	[mm]	16
Wrench size	SW	[mm]	17
Installation torque	T _{inst}	[Nm]	25

BLS M8-14BS85 Lightning Protection Anchor, Carbon steel, zinc plated

M8

Threaded stud with hex nut and washer Material: Grade 8.8 Carbon steel, zinc plate

Туре

BLS M8-14BS85

BLS M8-14BS85 A4

teel, zinc plated						
Order Code	Thread Size	Diameter x Depth of drilled hole	Total Length	Weight (kg/100pcs)	Box Quantity	
BLS0814BS085	M8	14 x 40 to 60	85	7.2	25	

7.2

25

BLS M8-14BS85 A4 Lightning Protection Anchor, A4 stainless steel Threaded stud with hex nut and washer *** Material: A4 stainless steel Order Thread Diameter x Depth Total Weight Box Туре Code of drilled hole Quantity Size Length (kg/100pcs)

85

14 x 40 to 60

BLS0814BS085A4

EJOT UK Limited, Hurricane Close, Sherburn Enterprise Park, Sherburn-in-Elmet, Leeds LS25 6PB. United Kingdom

Tel: +44 1977 68 70 40 Fax: +44 1977 68 70 41 Email: liebig@ejot.co.uk info@ejot.co.uk

