

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-21/0351 of 7 October 2021

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

EJOT concrete screw J6

Mechanical fasterners for use in concrete

EJOT UK Limited Hurricane Close, Sherburn Enterprise Park SHERBURN IN ELMET, LS25 6PB GROSSBRITANNIEN

EJOT Plant 16

13 pages including 3 annexes which form an integral part of this assessment

EAD 330232-00-0601, Edition 10/2016

European Technical Assessment ETA-21/0351

Page 2 of 13 | 7 October 2021

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-21/0351

Page 3 of 13 | 7 October 2021

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The EJOT concrete screw J6 is an anchor made of stainless steel of sizes 8, 10 and 12. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the concrete screw is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the concrete screw of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	see Annex B 3 and C 1
Characteristic resistance to shear load (static and quasi-static loading)	see Annex C 2
Displacements (static and quasi-static loading)	see Annex C 3
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed
Durability	See Annex B 1

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 4 and C 5

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Documents EAD No. 330232-00-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

European Technical Assessment ETA-21/0351

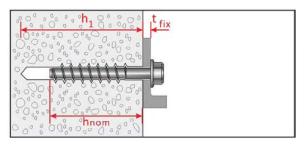
Page 4 of 13 | 7 October 2021

English translation prepared by DIBt

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 7 October 2021 by Deutsches Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstock Head of Section beglaubigt: Baderschneider

Product in the installed condition

Stainless steel A4

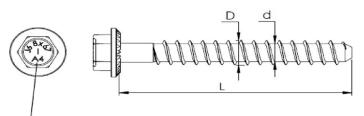
Hexagon Head: J-H A4 (J6 8, J6 10, J6 12)

Table A1: Materials and screw types

Name	Material							
Screw	I I a a d us a white a							
fastener	Head marking	material	1 1 1	04 4 440				
	J A4	Stainless steel	1.440	J1, 1.4404	(DOTH A4)			
	Analas sias (h	J6 8 J6 10 J6 12						
	Anchor size / h	nead types			-H	-H	-H	
	Material				A4	A4	A4	
	Characteristic	yield strength	yield strength f _{yk} N/mm ²			640	640	
	Characteristic	tensile strength	f _{uk}	N/mm ²	800	800	800	
	Elongation at r	rupture	As	[%]		≤ 8		
		(\$8x\infty\)				gon washer he 4 size 8,10,12	ead (stainless A4)	

Product description
Installed condition, Materials and screw types

Annex A1


Table A2: Dimensions and markings

Fastener size			J6 8	J6 10	J6 12
Embedment depth	h _{nom}	[mm]	85	100	120
Length of fastener	min L	[mm]	90	105	125
Length of lasterier	max L	[mm]	150	150	150
Thread diameter	D	[mm]	9,9	12,5	14,3
Shaft diameter	d	[mm]	7,4	9,4	11,3
Thread pitch	р	[mm]	5,8	7,7	8,1

Stainless

Steel

Α4

Head Marking: Identifying mark of producer: J6 Nominal Size: e.g. 8mm Length: e.g. 67mm

EJOT concrete screw J6 Annex A2 **Product description** Dimensions and markings

Specifications of Intended use

Anchorages subject to:

- · Static and quasi-static loads: All sizes.
- Fire exposure: All sizes

Base materials:

- Compacted reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013,
- · Uncracked or cracked concrete: all sizes.

Use conditions (Environmental conditions)

- Anchorages subject to dry internal conditions. (zinc plated steel and stainless steel)
- Anchorages subject to external atmospheric exposure (including industrial and marine environment) or exposure in permanently damp internal conditions if no particular aggressive conditions exist. (Stainless steel)

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere or indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used)

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored.
 The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed in accordance with EN 1992-4:2018 and Technical Report TR 055, Edition February 2018.

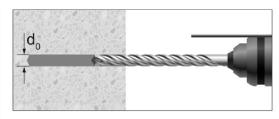
Installation:

- · Hammer drilling only.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted hole is filled with high strength mortar and if under shear or oblique tension load it is not the direction of the load application.
- · After installation further turning of the anchor shall not be possible.
- The head of the anchor must be fully engaged on the fixture and show no signs of damage.

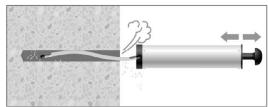
EJOT concrete screw J6	
Intended Use Specifications	Annex B1

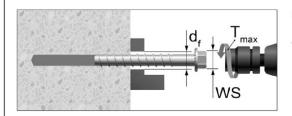
Table B1: Installation parameters

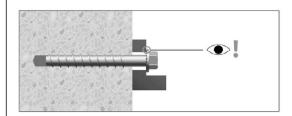
Fastener size			J6 8	J6 10	J6 12
Diameter of drill bit	d_0	[mm]	8	10	12
Embedment depth	h _{nom}	[mm]	85	100	120
Minimum hole depth in concrete	h₁ ≥	[mm]	95	110	130
Effective embedment depth	h _{ef}	[mm]	51,9	58,7	75,6
Clearance hole	df	[mm]	11	13	15
Thickness of fixture	tfix	[mm]	5-65	5-50	5-30
Wrench size	ws	[mm]	13	17	19
Maximum torque moment, machine setting	T _{max} ≤	[Nm]	120	185	185


Table B2: Minimum thickness of member, Minimum spacing and edge distance

Fastener size			J6 8	J6 10	J6 12
Minimum member thickness	h _{min}	[mm]	125	140	170
Minimum edge distance	Cmin	[mm]	50	60	70
Minimum spacing	Smin	[mm]	50	60	70


EJOT concrete screw J6	
Intended Use	Annex B2
Installation parameters, minimum member thickness, minimum edge distance	
and anchor spacing	


Installation instruction


Drill the hole to the bore hole depth h₁.

Clean the hole.

Screw in the anchor by using an impact screw driver. In case of using impact screw driver: T_{max} acc. to Table B1 WS= Wrench Size

Control of complete setting, full contact of screw head with fixture part.

EJOT concrete screw J6	
Intended Use Installation Instruction	Annex B3

Table C1: Characteristic resistance under tension loading

Fastener size			J6 8	J6 10	J6 12		
Steel failure							
Characteristic resistance	N _{Rk,s}	[kN]	33,0	53,7	78,1		
Partial factor	γ _{Ms} 1)	[-]	1,5	1,5	1,5		
		Pull-out fail	lure				
Characteristic resistance in cracked concrete C20/25	N _{Rk,p}	[kN]	4,5	7,0	12,0		
Characteristic resistance in uncracked concrete C20/25	N _{Rk,p}	[kN]	9,0	16,0	25,0		
Increasing factors for No. in		C30/37		1,22			
Increasing factors for N _{Rk,p} in cracked or uncracked concrete	Ψc	C40/50		1,41			
cracked or uncracked concrete		C50/60		1,58			
Installation factor	γinst	[-]	1,4	1,0	1,2		
	Co	oncrete cone	failure				
Effective embedment depth	h _{ef}	[mm]	51,9	58,7	75,6		
Characteristic edge distance	Ccr,N	[mm]		1,5h _{ef}			
Characteristic spacing	S _{cr,N}	[mm]		3h _{ef}			
Factor for cracked concrete	k cr	[-]		7,7			
Factor for uncracked concrete	k ucr	[-]		11,0			
		Splitting fail	lure				
Characteristic resistance in uncracked concrete C20/25	N ⁰ Rk,sp	[kN]		$N^0_{Rk,sp} = N_{Rk,p}$			
Characteristic edge distance for splitting	C _{cr,sp}	[mm]	1,5h _{ef}				
Characteristic anchor spacing for splitting	S _{cr,sp}	[mm]	3h _{ef}				

¹⁾ In absence of other national regulations.

Table C2: Displacements under tension loads for uncracked and cracked concrete

Fastener	Concrete	Tension load	Displa	cement
size		N	δνο	δn∞
[-]	[-]	[kN]	[mm]	[mm]
J6 8		1,5	0,1	0,8
J610	cracked C20/25	3,3	0,2	1,0
J612	020/23	4,8	0,3	1,2
J6 8		3,1	0,1	0,8
J6 10	uncracked C20/25	7,6	0,1	1,0
J6 12	G20/25	9,9	0,3	1,2

EJOT concrete screw J6	
Performance	Annex C1
Characteristic values under tension loading, Displacements under tension	
loading	

Table C3: Characteristic resistance under shear loading

Fastener size			J6 8	J6 10	J6 12			
Setting depth	h _{nom}	[mm]	85	100	120			
Effective embedment depth	h _{ef}	[mm]	51,9	58,7	75,6			
Steel failure without lever arm								
Characteristic resistance	V^0 _{Rk,s}	[kN]	16,5	26,8	39,0			
Ductility factor	k ₇	[-]		0,8				
Partial factor	γ _{Ms} 1)	[-]	1,25	1,25	1,25			
Steel failure with lever arm								
Characteristic resistance	M^0 _{Rk,s}	[Nm]	35,9	74,4	130.6			
Partial factor	γ _{Ms} ¹⁾	[-]	1,25	1,25	1,25			
Concrete pryout failure								
k-factor	k ₈	[-]	1,0	2,0				
Partial factor	γ _{Mcp} ¹⁾	[-]						
Concrete edge failure								
Effective length of anchor	ℓ_{f}	[mm]	51,9	58,7	75,6			
Outside diameter of fastener	d _{nom}	[mm]	7,25	9,24	11,15			
Partial factor	γ _{Mc} 1)	[-]		1,5				

Table C4: Displacements under shear loads for uncracked and cracked concrete

Fastener size		Shear load	Displacement		
	Concrete	V	δνο	δν∞	
[-]	[-]	[kN]	[mm]	[mm]	
J6 8	Cracked	9,4		2,7	
J6 10	and uncracked	15,3	1,8		
J6 12	C20/25	22,3		ı	

EJOT concrete screw J6	
Performance	Annex C2
Characteristic values under shear loading, Displacements under shear	
loading	

Table C5: Characteristic tension resistance values for resistance to fire

Fastener size				J6 8	J6 10	J6 12
		S	teel failu	re		
	R30	N _{Rk,s,fi}	[kN]	0,8	1,7	2,9
0 1	R60	N _{Rk,s,fi}	[kN]	0,7	1,3	2,4
Characteristic resistance	R90	N _{Rk,s,fi}	[kN]	0,5	1,0	2,0
	R120	N _{Rk,s,fi}	[kN]	0,4	0,9	1,6
		Pu	ll-out fail	ure		
	R30		[kN]	1,1	1,8	3,0
Characteristic resistance in	R60	N _{Rk,p,fi}				
concrete ≥ C20/25	R90					
	R120	N _{Rk,p,fi}	[kN]	0,9	1,4	2,4
	_	Concr	ete cone	failure		
	R30		[kN]	3,3	4,5	8,6
Characteristic resistance in concrete ≥ C20/25	R60	N ⁰ Rk,c,fi				
	R90					
	R120	N ⁰ Rk,c,fi	[kN]	2,7	3,6	6,8
Effective embedment depth		h _{ef}	[mm]	51,9	58,7	75,6
Minimum member thickness		h _{min}	[mm]	125	140	170
•		S _{cr,N,fi}	[mm]	4h _{ef}		
Spacing		Smin	[mm]	50	60	70
Edge distance		C _{cr,N,fi}	[mm]	2h _{ef}		
Fire exposure from one side only c _{min}		Cmin	[mm]	50	60	70
Fire exposure from more than one side		Cmin	[mm]	≥ 300 mm		

¹⁾ In absence of other national regulations.

EJOT concrete screw J6		
Performance Characteristic tension resistance values for resistance to fire	Annex C3	

Table C6: Characteristic shear resistance values for resistance to fire

Fastener size				J6 8	J6 10	J6 12			
Steel failure without level arm									
	R30	$V_{Rk,s,fi}$	[kN]	0,8	1,7	2,9			
	R60	$V_{Rk,s,fi}$	[kN]	0,7	1,3	2,4			
Characteristic resistance	R90	$V_{Rk,s,fi}$	[kN]	0,5	1,0	2,0			
	R120	$V_{Rk,s,fi}$	[kN]	0,4	0,9	1,6			
	Steel failure with level arm								
	R30	M^0 _{Rk,p,fi}	[Nm]	0,9	2,3	4,9			
	R60	M^0 Rk,p,fi	[Nm]	0,7	1,9	4,0			
Characteristic resistance	R90	M ⁰ Rk,p,fi	[Nm]	0,5	1,5	3,3			
	R120	M ⁰ Rk,p,fi	[Nm]	0,45	1,3	2,6			
	•	Pry-out f	ailure						
k ₈			[-]	1	1	2			
Characteristic resistance	R30								
	R60	$V_{Rk,cp,fi}$	[kN]	3,3	4,5	17,1			
	R90								
	R120	V _{Rk,cp,fi}	[kN]	2,7	3,6	13,7			
Concrete edge failure									
Characteristic resistance	≤ R90	V _{Rk,c,fi}	[kN]	$V^0_{Rk,c,fi} = 0.25 * V^0_{Rk,c}^2$					
	R120	V _{Rk,c,fi}	[kN]	$V^0_{Rk,c,fi} = 0.20 * V^0_{Rk,c}{}^{2)}$					

¹⁾ In absence of other national regulations.

EJOT concrete screw J6

Performance
Characteristic shear resistance values for resistance to fire

Annex C4

 $^{^{2)}}$ V $^{0}_{\text{Rk,c}}$ = characteristic resistance for concrete edge failure in cracked concrete C20/C25 under normal temperature calculated acc. to EN 1992-4:2018.